Annobin

The ANNOBIN plugin
(Annobin)
Version 10.0

Nick Clifton

This manual describes the ANNOBIN plugin and the annocheck program, and
how you can use them to determine what security features were used when
a program was built.

Copyright (©) 2018 - 2021 Red Hat

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation
License”.

Table of Contents

1 What is Binary Annotation 7 1
2 How to add Binary Annotations to
your application................... 3
3 How to examine the information
stored in the binary............................... 9
3.1 Encoding Protocol and Producer Versions....................... 9
3.2 Encoding Stack Protections................ ..., 10
3.3 Encoding Position Independence................ 10
3.4 Encoding Optimization and Debugging Levels.................. 11
3.5 Encoding Control Flow Protection.................. 11
3.6 Encoding the Size of Enumerations 12
3.7 Encoding Instrumentation Options.....................coov.... 12
4 Analysing binary files.......................... 13
4.1 The builder checker........ 14
4.2 The Hardened security checker............. 15
4.2.1 The bind-now testo 16
4.2.2 The gnu-stack test........ ... i 17
4.2.3 The writeable-got test L 17
4.2.4 These tests need extended documentation................. 18
4.2.5 How to waive the results of annocheck tests............... 21
4.3 The annobin note displayer................oooiiiiiiiii., 21
4.4 The section size recorder............ooiiiiiiiiiiiiii 22
4.5 How long did the check take 7 i 22
5 Configuring annobin and annocheck.......... 25
6 How to use the information
stored in the binary. 27
6.1 The built-by script ... 27
6.2 The check-abi script........... 29
6.3 The hardened script ... 30
6.4 The run-on-binaries-in script............c.ooiiiiiiiiiiiiia.. 32
Appendix A GNU Free
Documentation License 35

1 What is Binary Annotation ?

Binary Annotation is a method for recording information about an applica-
tion inside the application itself. It is an implementation of the Watermark
specification defined here: https://fedoraproject.org/wiki/Toolchain/
Watermark

Although mainly focused on recording security information, the system
can be used to record any kind of data, even data not related to the appli-
cation. One of the main goals of the system however is the ability to specify
the address range over which a given piece of information is valid. So for
example it is possible to specify that all of a program was compiled with
the -02 option except for one special function which was compiled with -00
instead.

The range information is useful because it allows third parties to examine
the binary and find out if its construction was consistent. IE that there are
no gaps in the recorded information, and no special cases where a required
feature was not active.

The system works by adding special sections to the application containing
individual pieces of information along with an address range for which the
information is valid. (Some effort has gone into the storing this information
in a reasonably compact format).

The information is generated by a plugin that is attached to the compiler.
The plugin extracts information from the internals of compiler and records
them in the object file(s) being produced.

Note - the plugin method is just one way of generating the information.
Any interested party can create and add information to the objhect file,
providing that they follow the Watermark specification.

The information can be extracted from files via the use of tools like
readelf and objdump. The annobin package itself includes a program called
annocheck which can can also examine this information. Details on this pro-
gram can be found elsewhere in this documentation.

https://fedoraproject.org/wiki/Toolchain/Watermark
https://fedoraproject.org/wiki/Toolchain/Watermark

2 How to add Binary Annotations to
your application.

Normally the option to enable the recording of binary annotation notes
is enabled automatically by the build system, so no user intervention is
required. On Fedora and RHEL based systems this is handled by the
‘redhat-rpm-config’ package.

Currently the binary annotations are generated by a plugin to the com-
piler (GCC, clang or 11vm). This does mean that files that are not compiled
by any of these compilers will not gain any annotations, although there is
an optional assembler switch to add some basic notes if none are present in
the input files.

If the build system being used does not automatically enable the
‘annobin’ plugin then it can be specifically added to the compiler command
line by adding the -fplugin=annobin (for gcc) or -fplugin=annobin-
for-clang (for clang) or -fpluin=annobin-for-1lvm (for LLVM) option.
It may also be necessary to tell the compiler where to find the plugin by
adding the -iplugindir= option, although this should only be necessary if
the plugin is installed in an unusual place.

If it is desired to disable the recording of binary annotations then
the -fplugin-arg-annobin-disable (for gcc) or -Xclang -plugin-arg-
annobin-disable (for clang or 11lvm) can be used. Note - these options
must be placed after the ~-fplugin=annobin option.

On Fedora and RHEL systems the plugin can be disabled entirely for all
compilations in a package by adding %undefine _annotated_build to the
spec file.

The plugin accepts a small selection of command line arguments, all ac-
cessed by passing -fplugin-arg-annobin-<option> (for gcc) or -Xclang
-plugin-arg-annobin-<option> (for clang or 11vm) on the command line.
These options must be placed on the command line after the plugin itself is
mentioned. Note - not all versions of the plugin accept all of these options.
The options are:

disable
enable Either disable or enable the plugin. The default is for the plugin
to be enabled.

help Display a list of supported options on the standard output. This
is in addition to whatever else the plugin has been instructed to
do.

version Display the version of the plugin on the standard output. This
is in addition to whatever else the plugin has been instructed to
do.

verbose Report the actions that the plugin is taking. If invoked for a
second time on the command line the plugin will be very verbose.

Annobin

function-verbose

Report the generation of function specific notes. This indicates
that the named function was compiled with different options
from those that were globally enabled.

stack-size-notes
no-stack-size-notes

Do, or do not, record information about the stack requirements
of functions in the executable. This feature is disabled by default
as these notes can take up a lot of extra room if the executable
contains a lot of functions.

stack-threshold=N

If stack size requirements are being recorded then this option
sets the minimum value to record. Functions which require less
than N bytes of static stack space will not have their requirements
recorded. If not set, then N defaults to 1024.

global-file-syms

no-global-

attach
no-attach

file-syms

If enabled the global-file-syms option will create globally vis-
ible, unique symbols to mark the start and end of the compiled
code. This can be desirable if a program consists of multiple
source files with the same name, or if it links to a library that
was built with source files of the same name as the program it-
self. The disadvantage of this feature however is that the unique
names are based upon the time of the build, so repeated builds of
the same source will have different symbol names inside it. This
breaks the functionality of the build-id system which is meant
to identify similar builds created at different times. This feature
is disabled by default, and if enabled can be disabled again via
the no-global-file-syms option.

When gce compiles code with the ~-ffunction-sections option
active it will place each function into its own section. When
the annobin attach option is active the plugin will attempt to
attach the function section to a group containing the notes and
relocations for the function. In that way, if the linker decides to
discard the function, it will also know that it should discard the
notes and relocations as well.

The default is attach, but this can be disabled via the
no-attach option. Note however that if both attach and
link-order are disabled then note generation for function
sections will not work properly.

Chapter 2: How to add Binary Annotations to your application. 5

link-order

no-link-order
As an alternative to using section groups and a special assembler
directive the plugin can use a feature of the ELF SHF_LINK_
ORDER flag which tells the linker that it should discard a section if
the section it is linked to is also being discarded. This behaviour
is enabled by the link-order option.

rename Adds an extra prefix to the symbol names generated by the
annobin plugin. This allows the plugin to be run twice on the
same executable, which can be useful for debugging and build
testing.

active-checks

no-active-checks
The annobin plugin will normally generate a warning message
if it detects that the -D_FORTIFY_SOURCE=2 has not been pro-
vided on the command line and -flto has been enabled. This
is because LTO compilation hides preprocessor options, so in-
formation about them cannot be passed on to the annocheck
tool.

The active-checks option changes the warning message into
an error message, just as if ~-Werror had been specified.

The no-active-checks option disables the warning message en-
tirely.
Note - in the future the annobin plugin might be extended to
produce warning messages for other missing command line op-
tions.

dynamic-notes
no-dynamic-notes
static-notes
no-static-notes
These options are deprecated.

ppc64-nops

no-ppc64-nops
This option either enables or disables the insertion of NOP in-
structions in the some of the code sections of PowerPC64 bi-
naries. This is necessary to avoid problems with the elflint
program which will complain about binaries built without this
option enabled. The option is enabled by default, but since it
does increase the size of compiled programs by a small amount,
the no-ppc64-nops is provided in order to turn it off.

The plugins record information appropriate to the compiler that is run-
ning them. So the gcc plugin records information about the following op-
tions:

6 Annobin

-D_FORTIFY_SOURCE=[2]|3]
-D_GLIBCXX_ASSERTIONS
-0

-Wall
-fPIC
-fPIE

—-fcf-protection
—finstrument_functions
-flto

—fomit-frame-pointer
-fprofile
-fprofile-arcs
-fsanitize
-fshort-enums
-fstack-clash-protection
-fstack-protector
)
-mbranch-protection (AArch64)
-mstack-realign (i1386)
-mtls-size (PowerPC)

The Clang plugin records information on the following command line
options:

-0

-Wall
-fPIC
-fPIE

-fcf-protection-branch
-fcf-protection-return
-fsanitize=cfi-cast-strict
-fsanitize=safe-stack
-fspeculative-load-hardening
-fstack-protector-strong

Note - if LTO compilation is enabled (-flto) then any data recorded by
the Clang plugin is ignored when the object file is recompiled by the LLVM
backend. Hence when using LTO and Clang it is best to enable the LLVM
plugin.

The LLVM plugin records information on the following command line op-
tions:

-D_FORTIFY_SOURCE=[2]3]
-0

-Wall
-flto
-fPIC
-fPIE

—-fcf-protection-branch
-fcf-protection-return
-fsanitize=safe-stack
-fstack-protector-strong

g

9

3 How to examine the information stored
in the binary.

The information is stored in the ELF Note format in a special section called
.gnu.build.attributes. The readelf program from the binutils pack-
age can extract and display these notes when the --notes option is provided.
(Adding the --wide option is also helpful). Here is an example of the output:

Displaying notes found in: .gnu.build.attributes

Owner Data size Description

GA$<version>3p3 0x00000010 OPEN Applies to region from
GA$<tool>gcc 7.2.1 20170915 0x00000000 OPEN Applies to region from
GA*GOW:0x452b 0x00000000 OPEN Applies to region from
GAx*<stack prot>strong 0x00000000 OPEN Applies to region from
GA*GOW:0x412b 0x00000010 func Applies to region from

This shows various different pieces of information, including the fact that
the notes were produced using version 3 of the specification, and version
3 of the plugin. The binary was built by gcc version 7.2.1 and the -fstack-
protector-strong option was enabled on the command line. The program was
compiled with -O2 enabled except the baz() function which was compiled
with -O0 instead.

The most complicated part of the notes is the owner field. This is used to
encode the type of note as well as its value and possibly extra data as well.
The format of the field is explained in detail in the Watermark specification,
but it basically consists of the letters ‘G’ and ‘A’ followed by an encoding
character (one of ‘*$!+’) and then a type character and finally the value.

The notes are always four byte aligned, even on 64-bit systems. This
does mean that consumers of the notes may have to read 8-byte wide values
from 4-byte aligned addresses, and that producers of the notes may have to
generate unaligned relocs when creating them.

Most of the notes have a reasonably self explanatory name and value.
The exception are the version and GOW notes, which are included in the
table below.

3.1 Encoding Protocol and Producer Versions

The version note encodes the version of the Watermark specification used
and the version of the tool used to generate the notes. Typically the protocol
version will be 3 and the plugin version will be 9. It also encodes the tool
used to generate the notes as a single character. The following characters
are used:

L The notes have been produced by the Clang plugin.
\ The notes have been produced by the LLVM plugin.

a The notes have been produced by the assembler.

0x8a0 to
0x8a0 to
0x8a0 to
0x8a0 to
0x8c0 to

0x8c
0x8c
0x8c
0x8c
0x8c

10 Annobin

c The notes have been produced by the gce plugin for the .text.cold
section.

e The notes have been produced by the gce plugin for the .text.exit
section.

g The notes have been produced by the gcc plugin when running
in LTO mode.

h The notes have been produced by the gce plugin for the .text.hot
section.

1 The notes have been produced by the linker.

P The notes have been produced by the gcc plugin.

s The notes have been produced by the gcc plugin for the

text.startup section.

3.2 Encoding Stack Protections

The stack protection note (value 2) encodes the setting of the -fstack-
protector option. Possible values are:

0 Not compiled with any setting of -fstack-protector (or the
setting is unknown).

1 Compiled with just -fstack-protector.

2 Compiled with -fstack-protector-all.

3 Compiled with -fstack-protector-strong.

4 Compiled with -fstack-protector-explicit.

3.3 Encoding Position Independence

The Position Independence Status note encodes the setting of the
-fpic/-fpie used when compiling the program. The value of the note can
be

Static code, ie neither pic nor pie.
Compiled with -fpic.
Compiled with -fPIC.

Compiled with -fpie.

s W N, O

Compiled with -fPIE

If both pic and pie have been specified on the command line then pie
takes the precedence in the encoding.

Chapter 3: How to examine the information stored in the binary. 11

3.4 Encoding Optimization and Debugging Levels

The GOW note encodes the optimization level (-0) and debugging level (-g)
used when compiling a binary. In order to save space this is stored as a bit
field with the bits having the following meanings:
bits 0 - 2
The debug type, ie DBX, DWARF, VMS or XCOFF. As speci-
fied by the -gstabs, ~gdwarf, -gvms and -gxcoff options.
bit 3 Set if GNU extensions to the debug type have been enabled.

bits 4 -5
The debug info level ie TERSE, NORMAL or VERBOSE as set
by the -g<level> option.

bits 6 - 8
The DWARF version, if DWARF is being generated. Set by the
-gdwarf-<version> option.

bits 9 - 10
The optimization level as set by the ~-0<number> option. Levels
above 3 are treated as if they were 3.

bit 11 Set if the optimize-for-size option (-0s) is enabled.

bit 12 Set if the inaccurate-but-fast optimization option (-0fast) has
been enabled.

bit 13 Set if the optimize-with-debugging option (-0g) has been en-
abled.

bit 14 Set if the enable most warnings option (-Wall) has been enabled.

bit 15 Set if the format security warning option (-Wformat-security)
has been enabled.

bit 16 Set if LTO compilation has been enabled.

bit 17 Set if LTO compilation has been disabled. This bit is here so
that tools can detect notes created by earlier versions of annobin
which did not set any bits higher than 15.

The other bits are not currently used and should be set to zero so they
can be used in future extensions to the specification.

3.5 Encoding Control Flow Protection

Records the setting of the —~cf-protection option. This is a bit mask using
the following bits, based upon the definition of the enum cf_protection_
level from gec’s flag-types.h header file:

bit O Branches are protected. (ie ~fcf-protection=branch).

bit 1 Returns are protected. (ie ~fcf-protection=return).

12 Annobin

bit 2 If set, this indicates that the other bits were explicitly set by
an option on the gcc command line. Otherwise those bits were
implicitly set by either other options or the backend concerned.

If both bits 0 and 1 are set then this implies the -fcf-protection=full
option, and if neither are set then this implies the ~fcf-protection=none
option.

Note - in order to avoid storing a value of 0 in the note (which can be
confused with a NUL-byte to indicate the end of a string), the value stored
is biased by 1.

3.6 Encoding the Size of Enumerations
Record the value of the -fshort-enums option. Possible values are:
true The -fshort-enums option has been enabled.

false The -fshort-enums option has not been enabled.

3.7 Encoding Instrumentation Options

Records the enablement of various code instrumentation options. Note - this
note is only produced if one or more of these options are enabled.

The note encodes four values, separate by the forward slash (/) character.
These values are:

sanitization
Enabled via a plethora of ~-fsanitize=. .. options these tell gcc
to add extra code to help with various different types of error
checking features.

function instrumentation
Enabled via gee’s —-finstrument-functions option, this adds
special function calls at the entry and exit point of every normal
function.

profiling
Enabled via gcc’s —p or —pg options, this adds instrumentation
to the compiled code that generates output suitable for analysis
via the prof or gprof programs.

arc profiling
Enabled via gcc’s —~fprofile-arc option, or one of the meta-
profiling options, this option adds code to record how many
times every branch and function call is executed.

Each value represents a setting of an internal gcc flag variable. The exact
meaning of the values is specific to gce, but any non-zero number means that
the feature has been enabled in some way.

13

4 Analysing binary files.

annocheck
[~help]
[~help-tool]
[—version]
[-verbose]
[—quiet]
[-ignore-unknown]
[-report-unknown]
[-debug-rpm=rile]
[-dwarf-dir=dir]
[-prefix=text]
[-enable-tool]
[-disable-tool]
[-tool-option]
file...

The annocheck program can analyse binary files and report information
about them. It is designed to be modular, with a set of self-contained tools
providing the checking functionality. Currently the following tools are im-
plemented:

The annocheck program is able to scan inside rpm files and libraries.
It will automatically recurse into any directories that are specified on the
command line. In addition annocheck knows how to find debug information
held in separate debug files, and it will search for these whenever it needs
the resources that they contain.

New tools can be added to the annocheck framework by creating a new
source file and including it in the Makefile used to build annocheck. The
modular nature of annocheck means that nothing else needs to be updated.

New tools must fill out a struct checker structure (defined in
annocheck.h) and they must define a constructor function that calls
annocheck_add_checker to register their presence at program start-up.

The annocheck program supports some generic command line options
that are used regardless of which tools are enabled.

--debug-rpm=file
Look in file for separate dwarf debug information.

--dwarf-dir=dir
Look in dir for separate dwarf debug information files.

--help Displays the generic annobin usage information and then exits.

--help-tool
Display the usage information for tool and then exits.

—--report-unknown

--ignore-unknown
These options have two separate effects (and should really be
separated into different options). If enabled, unknown file types

14 Annobin

are reported when they are encountered. This includes non-
ELF format files, block devices and so on. Directories are not
considered to be unknown and are automatically decended.

The second effect is how symbolic links are handled. If reporting
is enabled then they are treated as unknown and reported. If re-
porting is disabled then they are followed, if possible. Otherwise
they are reported as being unresolveable.

The default setting depends upon the file being processed. For
rpm files the default is to ignore unknowns, since these often
contain non-executable files, and dangling symbolic links. For
other file types, including directories, the default is to report
unknown files.

--prefix=text
Include text in the output description.

-—quiet Do not print anything, just return an exit status.

--verbose
Produce informational messages whilst working. Repeat for
more information.

--version
Report the version of the tool and then exit.

—--enable-tool
Enable tool. Most tools are disabled by default and so need to
be enabled via this option before they will act.

--disable-tool
Disable tool. Normally used to disable the hardening checker,
which is enabled by default.

--tool-option
Pass option on to tool.

Any other command line options will be passed to the tools in turn in
order to give them a chance to claim and process them.

4.1 The builder checker.

annocheck
[—disable-hardened]
—enable-builtby
[all]
[-tool=name]
[-nottool=name]
file. ..

The built-by tool is disabled by default, but it can be enabled by the
command line option --enable-builtby. The tool checks the specified files
to see if any information is stored about how the file was built.

Chapter 4: Analysing binary files. 15

Since the hardening checker is enabled by default it may also be useful
to add the --disable-hardened option to the command line.

The tool supports a few command line options to customise its behaviour:

--all

Report all builder identification strings. The tool has several
different heuristics for determining the builder. By default it will
report the information return by the first successful heuristic. If
the --all option is enabled then all successful results will be
returned.

—--tool=name

This option can be used to restrict the output to only those files
which were built by a specific tool. This can be useful when
scanning a directory full of files searching for those built by a
particular compiler.

--nottool=NAME

This option can be used to restrict the output to only those files
which were not built by a specific tool. This can be useful when
scanning a directory full of files searching for those that were
not built by a particular compiler.

4.2 The Hardened security checker.

annocheck

[—skip-all]
[—skip-bind-now]
[-skip-branch-protection]
[—skip-cf-protection]
[-skip-dynamic-segment]
[-skip-dynamic-tags]
[—skip-entry]
[—skip-fortify]
[—skip-future]
[—skip-glibcxx-assertions]
[-skip-gnu-relro]
[—skip-gnu-stack]
[—skip-lto]
[—skip-optimization]
[—skip-pic]

[-skip-pie]
[-skip-production]
[-skip-property-note]
[—skip-run-path]
[—skip-rwx-seg]
[—skip-short-enum]
[—skip-stack-clash]
[-skip-stack-prot]
[—skip-stack-realign]
[-skip-textrel]

16 Annobin

[—skip-threads]
[—skip-warnings]
[—skip-writeable-got]
[-test-name]
[~test-all]
[-test-future]
[—profile-el7]
[—profile-el9]
[-profile-rawhide]
[-ignore-gaps]
[-fixed-format-messages]
[—disable-colour]
[-enable-colour]
[-disable-hardened]
[-enable-hardened]
[—full-filenames]
[-base-filenames]
file...

The hardened tool checks that the specified files were compiled with spe-
cific security hardening features enabled. The features that are tested can
be specified via command line options, but the default is to test for all of
them.

New tests can be added to the hardened checker by adding an entry
in the tests array defined in hardened.c and then creating the necessary
code to support the test. There is more information on this process in
this blog: https://developers.redhat.com/articles/2021/07/15/
build-your-own-tool-search-code-sequences-binary-files

Currently the hardened tool can run the following tests:

4.2.1 The bind-now test

Summary: An attacker could intercept calls to shared library functions
Fix By: Add -Wl,-z,now to final link command line
Waive If: No shared libraries used

Example: FAIL: bind-now test because not linked with -Wl,-z,now

This test checks that lazy binding is not enabled in the binary. Lazy
binding can be used to delay resolving the links between an application and
any shared libraries that it uses:

https://www.airs.com/blog/archives/41

Using lazy binding provides a faster start-up for an application since this
resolving process is not performed until a function call is made to a specific
library. But it is also a security vulnerability since an attacker could replace
the binding with a link to their own code. Hence for security purposes
immediate binding rather than lazy binding should be used.

The type of binding is selected via a linker command line option, and
on a compiler command line the secure version usually looks like -W1,-
z,now. The lazy binding option is -Wl,-z,lazy although somne linkers are

https://developers.redhat.com/articles/2021/07/15/build-your-own-tool-search-code-sequences-binary-files
https://developers.redhat.com/articles/2021/07/15/build-your-own-tool-search-code-sequences-binary-files
https://www.airs.com/blog/archives/41

Chapter 4: Analysing binary files. 17

configured to use lazy binding by default, in which case just the absence of
the -W1,-z,now option is enough to trigger this test.

Whilst important, this test can be ignored if the binary does not use any
shared libraries. The test can be disabled via the --skip-bind-now option
and re-enabled by the --test-bind-now option.

4.2.2 The gnu-stack test

Summary: An attacker could place code on the stack and then rumn it

Fix By: Updating assembler sources and/or linker script

Waive If: The application really really needs to be able to dynamically cre-
ate and execute code

Example: FAIL: the gnu-stack test because the .stack section has incor-
rect permissions
Example: FAIL: the gnu-stack test because the .note.GNU-stack section has ex-
ecute permission
Example: FAIL: the gnu-stack test because the GNU stack segment has ex-
ecute permission
Example: FAIL: the gnu-stack test because the GNU stack segment does not have both r
Example: FAIL: the gnu-stack test because no .note.GNU-stack section found
Example: MAYB: the gnu-stack test because multiple stack sections detected
This test checks that it is not possible to place code onto the stack and
then execute it. Normally the stack just holds data and addresses, but never
instructions. A favourite tactic of attackers however is to discover a buffer
overrun bug that addresses the stack and then place instructions there before
forcing the processor to execute them.

The test actually checks several different parts of a binary file in order
to determine that its stack is safe, which is why there are several different
potential failure messages.

Most applications will have a section inserted into them by the compiler
called .note. GNU-stack. The section has no contents, but the read, write,
and execute attribues of the section reflect the needs of the application’s
stack.

Ordinary compiled code sholuld never see this problem, but the test fail-
ure can be triggered by programs built from assembler sources or linked
with a custom made linker map. To fix the problem either the linker map
needs to be updated to ensure that the stack section is not executable or
the assembler sources need to be extended to a note that the stack is not
executable:

.section .note.GNU-stack,"",’progbits

If necessary the test can be disabled via the --skip-gnu-stack option
and re-enabled via the —-test-gnu-stack option.

4.2.3 The writeable-got test

Summary: An attacker could intercept and redirect shared library func-
tion calls

18 Annobin

Fix By: Link with -Wl,--secure-plt
Waive If: No shared libraries are used

Example: FAIL writeable-got test because the GOT/PLT relocs are writeable

This test checks that the instructions to set up the GOT and PLT tables
in a dynamic executable cannot be altered by an outside source.

Dynamic executables use two tables to help them connect to shared li-
braries. These tables - the GOT and the PLT - are set up when the program
runs, based upon instructions held in special sections in the file. If these sec-
tions are writeable then an attacker could change their contents and thus
cause the program to call the wrong functions in the shared libraries.

Under normal circumstances this test should never fail. If it does then
something unusal is going on. One possible cure is to add the -Wl,--secure-
plt option to the final link command line.

If necessary the test can be disabled via the --skip-writeable-got op-
tion and re-enabled via the --test-writeable-got option.

4.2.4 These tests need extended documentation

No RWX segments.
No program segment should have all three of the read, write and
execute permission bits set. Disabled by --skip-rwx-seg.

No text relocations
There should be no relocations against executable code. Dis-
abled by --skip-textrel.

Correct runpaths
The runpath information used to locate shared libraries at run-
time must only include directories rooted at /usr. Disabled by
--skip-run-path.

Missing annobin data
The program must have been compiled with annobin notes en-
abled. Disabled by --ignore-gaps.

Strong stack protection
The program must have been compiled with the -fstack-
protector-strong option enabled, and with -D_FORTIFY_
SOURCE=[2]3] specified. It must also have been compiled at at
least optimization level 2. Disabled by --skip-stack-prot.

Dynamic data present
Dynamic executables must have a dynamic segment. Disabled
by --skip-dynamic-segment.

Position Independent compilation
Shared libraries must have been compiled with —fPIC or -fPIE
but not -static. This check can be disabled by --skip-pic.

Chapter 4: Analysing binary files. 19

Dynamic executables must have been compiled with —-fPIE and
linked with —-pie. This check can be disabled by —-skip-pie.

Safe exceptions
Program which wuse exception handling must have been
compiled with -fexceptions enabled and with -D_GLIBCXX_
ASSERTIONS specified. Disabled by --skip-threads and/or
--skip-glibcxx-assertions.

Stack Clash protection
If available the -fstack-clash-protection must have been
used. Disabled by --skip-stack-clash.

Control Flow protection
If available the -fcf-protection=full option must have been
used. Disabled by --skip-cf-protection. If this option is
disabled then the check for GNU Property notes will also be
disabled.

Branch protection
For AArch64 binaries the -mbranch-protection option, if avail-
able, must have either not. Disabled by --skip-branch-
protection.

Stack realignment
For i686 binaries, the -mstackrealign option must have been
specified. Disabled by --skip-stack-realign.

Source fortification
The program must have been compiled with the -D_FORTIFY_
SOURCE=[2]3] command line option specified. Disabled by
—-—skip—fortify.

Optimization
The program must have been compiled with at least -02 opti-
mization enabled. Disabled by --skip-optimization.

Link Time Optimization
The program must have been compiled with link time optimiza-
tion (-flto) enabled. Currently this is a soft check, so failing
this test is not considered a reason to fail the overall run. Dis-
abled by --skip-1to.

Read only relocations
The program must not have any relocations that are held in a
writeable section. Disabled by --skip-gnu-relro.

GNU Property Note
For x86_64, AArch64 and PowerPC binaries, check that a cor-
rectly formatted GNU Property note is present. The contents
of the notes are architecture specific. Disabled by --skip-
property-note.

20

Enum Size

Annobin

Check that the program makes consistent use of the -fshort-
enum option.

Production Ready Compiler

The tool
--skip-all

Check that the program was built by a production-ready com-
piler. Disabled by --skip-production.

does support a couple of other command line options as well:

Disable all tests. Not really useful unless followed by...

—-—test—-name

—-—-test-fut

--profile-
——profile-
--profile-

—-disable-

Enable test name.

ure
Report future fail tests. These are tests for security features
which are not yet implemented, but are planned for the future.
The --skip-future option can be used to restore the default
behaviour of skipping these tests.

el9

rawhide

el7

Rather than enabling and disabling specific tests a selection can
be chosen via a profile option. The --profile-el9 option will
select the tests suitable for RHEL-9 binaries. The --profile-
rawhide option will select tests suitable for Fedora rawhide bi-
naries and the --profile-el7 option will select tests suitable
for RHEL-7 binaries.

Other profiles may be added in the future.

hardened

Disable the tool.

—-enable-hardened

Enable the tool if it was previously disabled. The option is also
the default.

--ignore-gaps

-—-fixed-fo

Do not complain about gaps in the note data.

rmat-messages
Display messages in a fixed, machine parseable format. The
format is:

Hardened: <result>: test: <test-name> file: <file-name>

Where <result> is PASS or FAIL and <test-name> is the name
of the test, which is the same as the name used in the --test-
<test-name> option. The <filename> is the name of the input
file, but with any special characters replaced so that it always
fits on one line.

Chapter 4: Analysing binary files. 21

Here is an example:
Hardened: FAIL: test: pie file: a.out.

--disable-colour

--enable-colour

--disable-color

-—enable-color
Do not use colour to enhance FAIL, MAYB and WARN mes-
sages. By default annocheck will add colour to these messages
so that they stand out when displayed by a terminal emulator.
This option can be used in order to turn this feature off. The fea-
ture can be re-enabled with —--enable-colour. The American
spelling of color is also supported.

-—full-filenames

--base-filenames
Use the full pathname for files. Useful when recursing into di-
rectories. By default this feature is disabled in normal mode and
enabled in verbose mode. This option and its inverse ——base-
filenames can be used to set a fixed choice.

4.2.5 How to waive the results of annocheck tests

Now that annocheck is being used by the builders for Fedora and RHEL
packages it is possible that certain tests may need to be waived for certain
packages. This can be done on a per-package basis by editting the contents
of the rpminspect.yaml file and adding an entry like this:
annocheck:
- hardened: --skip-property-note --ignore-unknown --verbose

This example shows how the property note test can be ignored. Note that
doing this overrides the default options that are passed to annocheck by the
rpminspect framework, which is why the -—ignore-unknown and --verbose
options are also included in the example.

4.3 The annobin note displayer

annocheck
[—disable-hardened]
—enable-notes
file...

The notes tool displays the contents of any annobin notes inside the
specified files. It groups the notes by address range, which can help locate
missing details.

The notes tool is disabled by default, but it can be enabled by the com-
mand line option --enable-notes. Since the hardening checker is enabled
by default it may also be useful to add the --disable-hardened option to
the command line.

22 Annobin

4.4 The section size recorder

annocheck
[—disable-hardened]
[—size-sec=name]
[-size-sec-flags=/WA X]
[-size-seg-flags=!WRX]
[-size-human]
file...

The section-size tool records the size of named sections within a list of
files and then reports the accumulated size at the end. Since it is part of the
annocheck framework, it is able to handle directories and rpms files as well
as ordinary binary files.

The --size-sec=name option enables the tool and tells it to record the
size of section name. The option can be repeated multiple times to record
the sizes of multiple sections. It may also be useful to add the --disable-
hardened option to the command line as otherwise the security hardening
will be run at the same time.

Instead of searching for named sections, it is also possible to search for
sections with specific flags. The --size-sec-flags=<flags> option will
search for any section that has all of the specified <flags> set. Currently
only W, A and X are recognised as flags, indicating that the section must
have the Write, Alloc or Execute flags set respectively. If the ! exclamation
mark character is present then it negates the meaning of the following flags.
Thus --section-sec-flags=W option will search for any writeable section
whereas the ——size-sec-flags=W!A option will search only for sections that
are writeable but not allocated.

Instead of searching for sections by flags it is also possible to search
for segments by flags using the --size-seg-flags=<flags> option. The
flags recognised for segments are W for writeable, R for readable and X for
executable. Again the ! character can be used to invert the meaning of the
flags that follow it.

If the --verbose option is enabled, then the tool will also report the size
of the named section(s) in each file it encounters. If the -~size-human option
is enabled then sizes will be rounded down to the nearest byte, kibibyte,
mebibyte or gibibyte, as appropriate.

4.5 How long did the check take ?

annocheck
—enable-timing
file...
[-sec]
[—usec]
[-nsec]

23

The timing tool reports on the time taken by other tools to scan the
list of files. The tool is disabled by default, but it can be enabled by the
command line option --enable-timing.

By default the tool will report times in microseconds, but you can change
this to reporting in seconds with the --sec or in nanoseconds with the
--nsec. The default can be restored with the -—usec option.

25

5 Configuring annobin and annocheck

When building annobin and annocheck from the sources there are a few
configure options available to customise the build:

--with-debuginfod
debuginfod is a web service that indexes ELF/DWARF debug-
ging resources by build-id and serves them over HT'TP.

By default the annocheck program will be built and linked with
the debuginfod client library 1ibdebuginfod if it is present at
build time. The --with-debuginfod configure option can be
used to force the linking against the library even if the run-
time debuginfod program cannot be found. Alternatively the
--without debuginfod can be used to force annobin to be built
without 1libdebuginfod support, even if it is present on the
build system.

debuginfod is packaged with elfutils, starting with
version 0.178. You can get the latest version from
"https://sourceware.org/elfutils/’.

--with-gmp=PATH
The --with-gmp=PATH option can be used to specify an alter-
native path to the gmp libraries, if necessary.

-—without-libelf

The annocheck program uses 1ibelf to read ELF binaries. By
default the configure system will detect if the library is installed
and if not, then it will disable the building of annocheck and
the running of the tests. (Since they use annocheck). This
behaviour can be overrridden by the —-without-1ibelf option
which forces the build to assume that libelf is absent even if it
would normally be detected.

-—-without-tests
Disable running the testsuite after building the various binaries.

--with-clang
Enable the building of the annobin plugin for the Clang com-
piler.

--with-11lvm
Enable the building of the annobin plugin for the LLVM compiler
backend. This is separate from the Clang plugin and can be used
with any language that uses LLVM as a backend compiler.

--without-gcc-plugin
Do not build the gcc plugin.

—--without-docs
Do not build the documentation.

26 Annobin

--enable-maintainer-mode
This enables the regeneration of the Makefile and configure
files when building the annobin sources.

27

6 How to use the information stored in
the binary.

The annobin package includes some example scripts that demonstrate how
the binary information can be used.

NOTE: These scripts are now redundant, their functionality having been
subsumed into the annocheck program. However they are still useful as
examples of how the annobin data can be consumed, so they are still included
in the annobin sources.

The scripts are:

6.1 The built-by script

built-by
[~help]
[—version]
[~verbose]
[—quiet]
[-silent]
[-ignore]
[-readelf=path]
[-tmpdir=dir]
[-tool=name]
[-nottool=name]
[-before=date]
[-after=date]
[-minver=version]
[-maxver=version]
[-]
file...

The built-by script reports the name and version of the tool used to
build the specified file(s). This script also demonstrates how information
can be extracted from other other locations in the file, not just the binary
annotation notes.

The script can also be used to filter files, only reporting those built by
a specific tool, or a specific version of a tool, or even by a version of a tool
that was built between a range of dates.

The options available are:

‘~=help’
‘~h’ Displays the usage of the script and then exits.

‘——version’
4 bl

-v Displays the version of the script.

‘--verbose’

'k Enables verbose mode, causing the script to detail each action
it takes.

28 Annobin

3 . Y

——quiet

‘~q’ Do not include the name of script in the out generated by the
script.

‘~-silent’

‘-g’ Produce no output. Just return an exit status.

‘-—ignore’
Do not report file types that do not contain any builder infor-
mation.

‘~—tool=name’

Only report binaries built by name. The name is only an ordi-
nary string, not a regular expression.

‘-—nottool=name’
Skip any binary build by name. The name is only an ordinary
string, not a regular expression.

‘~-before=date’
Only report binaries built by a tool that was created before date.
date has the format YYYYMMDD.

‘-—after=date’
Only report binaries built by a tool that was created after date.
When combined with the —-before option can be used to re-
strict output to files which were built by tools created in a spe-
cific date range.

‘--minver=version’
Only report binaries built by a tool whose version is version or
higher. The version string should be in the form V.V.V, for
example 6.2.1.

‘--maxver=version’
Only report binaries built by a tool whoes version is version or
lower. Can be combined with the -——-minver option to restrict
output to those binaries created by tools within a specific version
range.

‘——tmpdir=dir’
‘-t=dir’ Directory to use to store temporary files.

‘--readelf=path’
‘-r=path’ Use the specified program to read the notes from the files.

—=’ Stop accumulating command line options. This allows the script
to be run on files whose names starts with a dash.

Chapter 6: How to use the information stored in the binary. 29

6.2 The check-abi script

check-abi
[~help]
[—version]
[-verbose]
[—quiet]
[-silent]
[-inconsistencies]
[-ignore-unknown]
[-ignore-ABI| enum| FORTIFY|stack-prot]
[-readelf=path]
[-tmpdir=dir]
-]
file...

The check-abi script reports any potential ABI conflicts in the files
specified. This includes the use of the -fshort-enums option, the -fstack-
protector option and the -D_FORTIFY_SOURCE option. All of these can
affect passing data between functions and hence should be used uniformly
throughout the binary.

The script accepts the following command line options:

--help

-h Displays the usage of the script and then exits.

--version

-v Displays the version of the script.

--verbose

-V Enables verbose mode, causing the script to detail each action
it takes.

--quiet

-q Do not include the name of script in the out generated by the
script.

--silent

-s Produce no output. Just return an exit status.

--inconsitencies

-i Only report files with potential ABI problems.

--ignore-unknown
Do not report file types that are not supported or recognised.

—-—ignore-ABI|enum| FORTIFY|stack-prot
Disables individual ABI checks. Multiple occurences of this op-
tion accumulate. Possible option values are:

‘ABT’ Disable checks of the general ABI information.
‘enum’ Disable checks of the ~fshort-enum option.
‘FORTIFY’ Disable checks of the ‘~D_FORTIFY_SOURCE’ option.

30 Annobin

‘stack-prot’
Disable checks of the —-fstack-protect option.
-—tmpdir=dir
-t=dir Directory to use to store temporary files.

--readelf=path
-r=path Use the specified program to read the notes from the files.

-- Stop accumulating command line options. This allows the script
to be run on files whose names starts with a dash.

6.3 The hardened script

hardened
[~help]
[—version]
[-verbose]
[—quiet]
[-ignore-unknown]
[-silent]
[~vulnerable]
[-not-hardened]
[all]
[file-type=auto| 1ib| exec|obj]
[-skip=opt|stack| fort|now|relro|picloperator|clash|cf|cet|realign]
[-readelf=path]
[-tmpdir=4dir]
-]
file...

The hardened script reports on the hardening status of the specified
file(s). In particular it checks that the whole file was compiled with -02
or higher and the -fstack-protector-strong, -D_FORTIFY_SOURCE=2,
-Wl,-z,now, -Wl,-z,relro, -fPIE, -Wp,-D_GLIBCXX_ASSERTIONS,
-fstack-clash-protection -fcf-protection=full and -mcet options.

The script accepts the following command line options:

--help

-h Displays the usage of the script and then exits.

-—version

-v Displays the version of the script.

--verbose

-V Enables verbose mode, causing the script to detail each action
it takes.

--quiet

-q Do not include the name of script in the out generated by the
script.

--ignore-unknown
-i Do not report file types that are not supported or recognised.

Chapter 6: How to use the information stored in the binary. 31

-—tmpdir=dir
-t=dir Directory to use to store temporary files.

--silent
-s Produce no output. Just return an exit status.

--vulnerable

-u Only report files that are known to be vulnerable. Ie files that
record all of the necessary information about how they were
built, but which were built with an incorrect set of options.

This option is the default behaviour of the script.

-—-not-hardened

-n Report any file that cannot be proven to be hardened. This is
like the ——vulnerable option, except that it will also report files
that do not record all of the necessary information.

--all
-a Report the hardening status of all of the files examined.

--file-type=autol|liblexec|obj
-f=auto| lib|exec|obj
Specifies the type of file being examined. Possible values are:

‘auto’ Automatically determine the file type from its ex-
tension. This is the default.

‘1iv’ Assume all files are shared libraries. Checks that
the -fPIC option was used.

‘exec’ Assume all files are executables. Checks that the
-fPIE option was used.

i

Assume all files are object files. Skips checks of the
bind now status.

‘obj

--skip=opt|stack|fort|now|relro|picloperator|clash|cf|cet
-k=opt|stack|fort|now|relrolpicloperator|clash|cf]|cet
Disables checks of various different hardening features. This op-
tion can be repeated multiple times, and the values accumulate.
Possible values are:

‘opt’ Disables checks of the optimization level used.
‘stack’ Disables checks of the stack protection level.
‘fort’ Disables checks for -D_FORTIFY_SOURCE.

‘now’ Disables checks for ‘BIND NOW’ status.

‘relro’ Disables checks for ‘relro’ or read-only-relocs.

‘pic’ Disables checks for ~fPIC/-fPIE.

32 Annobin

‘operator’

Disables checks for ‘-D_GLIBCXX_ASSERTIONS’ .
‘clash’ Disables checks for stack clash protection.
‘cf’ Disables checks for control flow protection. Note -

these checks are only run on x86_64 binaries.

4)

Disables checks for control flow enforcement. Note
- these checks are only run on x86_64 binaries.

cet

‘realign’ Disable checks for stack realignment. Note - these
checks are only run on i686 binaries.

--readelf=path
-r=path Use the specified program to read the notes from the files.

-- Stop accumulating command line options. This allows the script
to be run on files whose names starts with a dash.

6.4 The run-on-binaries-in script
run-on-binaries-in
[~help]
[—version]
[—verbose]
[—quiet]
[-ignore]
[-prefix="‘text’]
[-tmpdir=4dir]
[files-from=file]
[—skip-list=filel
[-]
program
[program-options]
file...
The run-on-binaries-in script allows other scripts, or programs, to be
run on the executable files contained inside archives. This includes ‘rpm’
files, ‘tar’ and ‘ar’ files and compressed files.

The script does not recurse into directories, but this can be handled by
the find command, like this:
find . -type f -exec run-on-binaries-in <script-to-run> {} \;

The script accepts the following command line options:

--help
-h Displays the usage of the script and then exits.

--version
-v Displays the version of the script.

--verbose
-V Enables verbose mode, causing the script to detail each action
it takes.

--quiet
-q

--ignore

-1

33

If this option is repeated it has the special effect of cancelling
out the automatic addition of the —-i to recursive invocations of
the script.

Do not include the name of script in the out generated by the
script.

Do not report file types that are not supported or recognised.

This option is automatically enabled when the script is recur-
sively invoked on an archive, unless the -V -V has been enabled.
This is because it is assumed that archives are likely to contain
files that do not need to be scanned.

--prefix=‘text’

-p="‘text’
Add this text to the output from the script when it runs the
program on a normal executable.

-—tmpdir=dir

-t=dir Directory to use to store temporary files.

——files-from=file

-f=file

Specifies a file containing a list of other files to examine, one per
line.

-—skip-list=file

-s=file

Specifies a file containing a list of files not to examine, one per
line. Blank lines and comments are ignored. Text after a file’s
name is also ignored. Filenames should start at the beginning
of a line.

Stops processing of command line options. This allows the script
to be run with a program whoes name starts with a dash.

35

Appendix A GNU Free Documentation
License

Version 1.3, 3 November 2008

Copyright (© 2000, 2001, 2002, 2007, 2008 Free Software Founda-
tion, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or

http://fsf.org/

36

Annobin

to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTpX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix A: GNU Free Documentation License 37

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

38

Annobin

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-
cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

Appendix A: GNU Free Documentation License 39

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not

40

Annobin

add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative
works of the Document.

Appendix A: GNU Free Documentation License 41

10.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of vi-
olation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new

42

11.

Annobin

versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.
org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public
wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, Califor-
nia, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 43

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:
Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled °‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the “with. ..Texts.” line with this:
with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

	What is Binary Annotation ?
	How to add Binary Annotations to your application.
	How to examine the information stored in the binary.
	Encoding Protocol and Producer Versions
	Encoding Stack Protections
	Encoding Position Independence
	Encoding Optimization and Debugging Levels
	Encoding Control Flow Protection
	Encoding the Size of Enumerations
	Encoding Instrumentation Options

	Analysing binary files.
	The builder checker.
	The Hardened security checker.
	The bind-now test
	The gnu-stack test
	The writeable-got test
	These tests need extended documentation
	How to waive the results of annocheck tests

	The annobin note displayer
	The section size recorder
	How long did the check take ?

	Configuring annobin and annocheck
	How to use the information stored in the binary.
	The built-by script
	The check-abi script
	The hardened script
	The run-on-binaries-in script

	GNU Free Documentation License

