Pana \Series

TheOnetoWatch for Constant Innovation-Making the Future ComeAlive

MICROCOMPUTER MN103E

MN103E Series
Instruction Manual

Pub.No.13350-020E

Panasonic

MS-DOS is a registered trademark of Microsoft Corporation.

Windows is a trademark of Microsoft Corporation.

PanaXSeries is a trademark of Matsushita Electric Industrial Co., Ltd.

The other corporation names, logotype and product names written in this book are trademarks or registered trademarks of their
corresponding corporations.

Request for your special attention and precautions in using the technical information

(1

2

)

“4)

)

(6)

(N

®)

and semiconductors described in this book

An export permit needs to be obtained from the competent authorities of the Japanese Government if any of
the products or technologies described in this book and controlled under the "Foreign Exchange and Foreign
Trade Law" is to be exported or taken out of Japan.

The technical information described in this book is limited to showing representative characteristics and
applied circuits examples of the products. It neither warrants non-infringement of intellectual property right
or any other rights owned by our company or a third party, nor grants any license.

We are not liable for the infringement of rights owned by a third party arising out of the use of the product or
technologies as described in this book.

The products described in this book are intended to be used for standard applications or general electronic
equipment (such as office equipment, communications equipment, measuring instruments and household
appliances).

Consult our sales staff in advance for information on the following applications:

Special applications (such as for airplanes, acrospace, automobiles, traffic control equipment, combustion
equipment, life support systems and safety devices) in which exceptional quality and reliability are required,
or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

Any applications other than the standard applications intended.

The products and product specifications described in this book are subject to change without notice for
modification and/or improvement. At the final stage of your design, purchasing, or use of the products,
therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications
satisfy your requirements.

When designing your equipment, comply with the guaranteed values, in particular those of maximum rating,
the range of operating power supply voltage, and heat radiation characteristics. Otherwise, we will not be
liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of
break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as
redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent
physical injury, fire, social damages, for example, by using the products.

When using products for which damp-proof packing is required, observe the conditions (including shelf life
and amount of time let standing of unsealed items) agreed upon when specification sheets are individually
exchanged.

This book may be not reprinted or reproduced whether wholly or partially, without the prior written
permission of Matsushita Electric Industrial Co., Ltd.

If you have any inquiries or questions about this book or our semiconductors, please contact one of our sales
offices listed at the back of this book.

About This Manual

This manual describes the details of the instruction set for the MN103E series. MN103E series has
the following four kinds of microprocessors; AM33-1/AM33-2/AM33-2A/AM34-1, and this
manual describes mainly the AM33-2 microprocessor core. When specifications differ according
to microprocessor core, this describes the contents with each microprocessor-core mark. Chapter 2
explains the overview of the instruction system, instruction functions, instruction format. Chapter 2
explains all instruction operations, flag changes and etc. Chapter 3 explains the pipeline
architecture, cautions on the instruction description and recommendations on the instruction
description. Moreover, the instruction lists: instruction set and instruction map, are shown as
appendix.

 How to search

There are four search ways in this manual in order to find necessary information quickly.
1. See the chapter title index at the beginning of the manual for finding each chapter title.
2. See the table of contents at the beginning of the manual for finding each title.

3. Each page has chapter title at the top end of the page and smaller title at the bottom end. You can
roughly know the contents described on pages with turning pages.

4. See the index at the end of the manual for finding instructions. Use the indexes showing the
instruction functions on the right pages for search.

* Related Manuals

The following related manuals are available. Please contact your sales representative for more
details.

MN103E Series Cross Assembler User's Manual
<Describes the assembler syntax and writing method>
MN103E Series C compiler User’s Manual: Usage Guide
<Describes the installation, startup and option of the C compiler>
MN1030/MN103S/MN103E Series C Compiler User's Manual: Language Description
<Describes the C-language syntax>
MN1030/MN103S/MN103E Series C Compiler User's Manual: Library Reference
<Describes the C-compiler standard library>
MN103E Series C Source Code Debugger for Windows® User’s Manual
<Describes the use of the C Source Code Debugger for Windows®>
MNI103E Series Installation Manual
<Describes the installation of Compiler, Crossassembler and C Source Code
Debugger, and the procedure for bringing up the in-circuit emulator>
MN1030/MN103S/MN103E Series On-board Debug Unit Setup Manual
<Describes the connection of the On-board Debug Unit and the initial setting of
On-board debugger>
MN101C/MN101D/MN101E/MN102E/MN102L/MN102H/MN1030/MN103S Series
PCI/PC Card installation Manual
<Describes the PCI/PC Card Installation>

< About This Manual 1>

How to read

Chapter 1 consists of mainly titles, abstracts, main body and cautions.

Chapter 2 consists of instruction formats, operational descriptions and cautions.

Chapter 3 consists of pipeline architecture, sample program and cautions.

The following shows the layout and meaning of each part.

Section title

Abstract

Introduction of this section

List

Chapterl - Instruction introduction

Instruction functions

The instruction s

is based on a simple instruction set. A C compiler will produce a generated
code that is compact and optimized from this instruction set.

As the result of that the basic instruction word length is one byte, the instruction set is a simple
one that limits data transfers with memory to load and store operations and it is possible to
minimize the increase in code size due to the assembler program. Furthermore, since the gener-
ated code is compact, more instructions can be placed in the limited cache memory space, result-
ing in an improved cache hit ratio and making it possible to minimize the degradation of perfor-
mance that results from accessing external memory on the event of a miss-hit

The AM 33 microprocessor core instruction set consists of the following five instruction catego-
ries: basic instructions, extended basic instructions, extended operation instructions, LIW ex-
tended operation and floa

\g-point operation i fons. The basic i

are common throughout the entire AM 30 series: these instructions maintain compatibility
between the different microprocessors in the series. The extended basic instructions are an
extension of the basic instructions for the AM33 microprocessor core; these functions were added
in order to enhance the interrupt functions and to support the extended registers. Functionally,
these instructions are equivalent to basic instructions. The extended operation instructions
provide compatibility with the extended instructions that were implemented in the AM31 micro-
processor core. The LIW extended operation instructions support parallel operations on data.
The floating-point operation i ions provide basic floating-point operations, such as arith-

metic operations that handle single-precision floating-point numbers, multiply-and

operations.

The instructions are all listed in the following chart. There are 47 basic instructions, 18 extended
operation instructions, 70 LIW extended operation instructions, nd 15 floating-point operation
instructions. (Almost all of the extended basic instructions were implemented as operand exten-
sions, ao they have been included in the count of the basic instructions.)

MOV,MOVU,MOVHU,MOVBU,MOVM,

Transfer insituclions | gy ¢ £xTH,EXTHU,EXTB,EXTBU,CLR,DCPF

Arithmetic

ADD,ADDC,INC,INC4,SUB,SUBC,MUL,MULU,DIV,DIVU
operational instruction

Compare instruction CMP

The contents of the section
is described in the list.

Y

Logie | AND,ORXORNOT

Shift instruction ASR,LSR,ASL,ASL2,ROR,ROL

?\t mainipulation BTST,BSET,BCLRA

instruction

Branch instruction Boc,Loc, SETLB,JMP,CALL CALLS, TRAP,
RET,RETF,RETS,RTI,SYSCALL

Debug instruction Pl

NOP instruction NOP

Instruction functions O

<About This Manual 2 >

Microprocessor mark

Applicable microprocessor cores

are shown here.

Section title

Abstract

Y

Introduction of
the section

Caution

Please read in
order ro normally
operate programs

Y

Chapter2 T

nstruction details

- FMOV

Transfer (Floating-point unit)

mem32(SP+disp) -> FSn

Memory contents are stored in the single-precision floating-point register (FSn).

Flag change

/ .

-]]) EC flag FCC flag]
Assembler mnemonic Note vIiZIolu[T|L][GIE|U Size
fmov (Rm), FSn N 3
fmov (SP), FSn 3
fmov (Rm, Ri), FSn 4
fmov (d8, Rm), FSn d8 is code-extended. 4
fmov (d24, Rm), FSn d24 is code-extended. 6
fmov (d32, Rm), FSn 7
fmov (d8, SP), FSn d8 is zero-extended. 4
fmov (d24, SP), FSn d24 is zero-extended. 6
fmov (d32, SP), FSn 70
0

VF : No change
ZF : No change
OF : No change
UF : No change

: No change

LF : No change
GF : No change
EF : No change
UF : No change

FMOV Mem, FSn o e
Operation FMOV in the case of (Rm), FSn
mem32(Rm) -> FSn Flag Change
FMOV in the case of (SP), FSn 0 Changed
mem32(SP) -> FSn)
FMOV in the case of (Rm, Ri), FSn - :No Change
mem32(Rm+Ri) -> FSn .
FMOV in the case of (disp, Rm), FSn O ' A|Ways 0
mem32(Rm+disp) -> FSn 1: A|Ways 1
FMOV in the case of (disp, SP), FS)
in the case of (disp. n 2 Undefined

* User definition

Code size and cycle

236 FMOV

‘When the memory address is not a multiple of 4, a system exception (address misalign-

ment exception) occurs.

< About This Manual 3 >

X,
\ Footer

Instructions are shown here.

number of instruction
The number of cycles
is calculated by the
following conditions.
(1) There is no
pipeline stall.

(2) Instruction fetch
is 2 cycle, and data
load/store is 1 cycle.

Description of the recommended

instruciton assignment

eed processing mark

yws a recommended item
to execute instructions
speed.

Recommended items

Chapter 3 Directidys for using instructions

High-speed processing

(3) Assignment of the instructions changing MDR at 2 cycles earlier than the final cycle of
executing instructions and subsequent RETF

[Contents]
It is recommended that more than I cycle should be inserted between the instructions changing
MBDR at 2 cycles earlier than the final cycle of the instruction execution and the subsequent RETF.

Description example of
general programs

Description example of
recommended programs.

[Examples]
[General description examples]
_lab
LABEL FUNCINFO _func,8,[]
inc a0
movm (sp), [other] <- Instructions changing MDR in
one cycle earlier than the final
cycle of instruction execution
retf <-RET

A pipeline stall occurs and the operations of RETF is delayed until the
write of MDR in MOVM has completed since the operations of RETF
start before the write of MDR has completed.

Instructions applicable
to recommended items

[Recommended description examples]

lab
LABEL FUNCINFO _lav,8,[]
movm (sp). [other] <- Instructions changing MDR in one
cycle earlier than the final cycle of
instruction execution
inc do
retf <-RET

Caution

RETF can be executed without the occurence of pipeline stall since the
write of MDR in MOVM has already completed when executing RETF.

[Applicabel instructions]
<Preceding instructions, or return target instruction> MOV (SP), reg, RET, RETF
<Subsequent instructions> RETF

Please read in order ro
normally operate programs

-

For the details of the description of FUNCINFO pseudo-instruction, refer to MN103EQ series

cross-assembler user's manual.

320 Recommendations on Instruction description

<About This Manual 4 >

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Table of Contents

Instruction Introduction

Instruction Description

Directions for using instructions

Appendix

Index

Table of Contents

Table of Contents

Chapter 1 Instruction Introduction

I INSEIUCHION SYSTEIM 1uvtieiiiieeiiieciieesite et e ete e et e e e teeeseteeessbeeessaeessseeesnseeensseeesseesnsneesnsseenns 2
N 57 1S (o (S o4 TS (3 g) AR 3
2-1 REEISTET SEL...uiiieiiieeiiieeitieeeitieeeieeeeite e st e e steeesteeessseeessseeessseeessseeessseesnsseesnsseesnsseesnsseesns 3
2-1-1 AddIess TEZISTETvevieiiieiiieeiieeeiie et eetee et e et e e rte e et e e e aeeessaeeesssee e sseeensaeennns 4

P B DY 1721 (<4 1] £ (PSPPSR 4
2-1-3 EXtENSION TEGISLET ..eeevuvreeiiieeriieeitieeeiieeeireeetteeetreesseeeasseeessseeensseeessseesnssessnsseesnses 4

P B] 72T (010 11 L1<) USSP 4
2-1-5 PrOZram COUNTETcccccuuiieeriiiiieeeeiiieeeerittee e e ettt eeeseitteeeesabteeeessaateeessnnsteeeeennnneeeens 5
2-1-6 Processor StatUS WOTAc.eeiiieiiiiiiieiiieeteeie ettt et e 5
2-1-7 LOOP INSIIUCLION TEEISLET ...eeeuvveeeirieeiieeeiiieeeiteeeiteesteeesseeeeseeessseeessseeessseeessseeensses 6
2-1-8 LOOP Address TEEISLOT ..eecuvvieeiiieeiiieeiieeeitee et ee ettt e ettt eesateeeeaeeeaaeeesaeeensneeennseesnnnes 6
2-1-9 Multiply/divide TEZISLETveeeiiieiiieeiie ettt ettt e e ereeeeaeeenes 7

2-2 EXteNAed T@ZISTET SCT...ccuviieiiiieiiieeiiieesieeesieeesteeeseteeesebeeeeeaeeessreeesaseesnsseeesnseesnnseesnnseeens 7
2-2-1 Extended Operation TEZISTETc.eeeviueeeriuieeriieeniieeeieeesieeesaeeesseeessreeessseeesnseeennnes 7
2-2-2 Multiply-and-accumulate operation r€ZISTETSeevuveerureerireeiieerieeeieeesreeeeee e 7
2-2-3 Multiply-and-accumulate overflow flagccccceeviiieiiiiniiiiieeeeeee e 7

2-3 Floating-point TEZISLET SETuveeerurieeirieeriieeeiieeeieeeiteeeteeeeteeesreeesseeensseesssseessseesnseeenns 8
2-3-1 Floating-POint TEZISTETcccuvieerureeerieeeieeeereeerieeeiteeeiaeeeaeeesreeesnseeensseeensseessseesnnns 8
2-3-2 Floating-point unit CONtrol TEZISLETeeevrieeriieeriieeieeeiieeetee e eree e e eree e 8

3 InStruction fUNCHIONSeoiiiiiiiiiieeieee ettt sttt e s 9
3-1 Tranfer INSTIUCTIONSccc.eiiuiiiiiiiieriie ettt ettt ettt e b 11
3-2 Arithmetic Operation INSIIUCTIONccueerivireiiieeiiieerieeerteeeeeeeteeesaeeeaeeeeaeeeeareeeenees 11
R I 00330 o (o 1 15 0 (15) 4 USRS 12
3-4 Logic Operation IMNSIUCHIONceecuveeeiureeriieeetieeeteeesiteeesireeesereesaneesseeessseeesnseeesssessnssens 12
3-6 Shift INSIIUCTIONS «...eiiiiiiiieiieiie ettt sttt ettt et s e b 13
3-7 NOP INSTIUCLIONS ..ottt ettt ettt et et e bt e bt e sate et e esbbeeabeenbeesaeeenee 13
3-5 Bit manipulation INStIUCHIONSccecvieeiiieeriieeiiieeeieeereeeeieeesreeeaeeeseaeesaeeeseseeesneennneas 13
3-8 Branch ISIUCLIONScc.eeiiiiiiiiiiiiiiieiie ettt sttt s 14
R I D 1S 011 ol 141 0 1o 10) RS 14
3-10 Extended operation INSHUCHIONSeeruvieeriieeiieeeiieeeieeeeieeesreeesreeesereeeereesneeeenneeas 15
3-11 LIW extended operation INStIUCHIONScccueeeriuieerivieeriieenieesieeeeieeesaeeesveeesveesneees 16
3-12 Floating-point operation INSIIUCLIONSeeeveeerueeerieeeiieeeiteeesiieeesreeesereeesreessseeennsens 17

Y, (5 1110) 5] o 1o TSP PPR 18
Address space when using an MMU (logical address Space)ccceeeeveeeveeeneeenveeniveeennennn 18

<Table of Contents - 2>

Table of Contents

Address space when not using an MMUccooiiiiiiiiiiiienie e 19
5 Addressing MOAEcc.eiiiiiiiiieiieiieee ettt ettt ettt e b e e nee e e 20
5-1 REZISTET ITECL ..ottt ettt ettt et et e e bt e et e e sseeenbeesaeaenseeeee 21
5-2 TMMEAIALEc.eeiiitienieeieeee ettt sttt sttt et st 21
5-3 REZISLET INAITECT ...eeutieiiiieiieeiiieiie ettt ettt ettt sttt et e et e sate e b e e sseesateesaeaenseenees 21
5-4 Register relative INAITECTc.coviieiiieiieiieeieeie ettt 22
55 ADSOIULE ..ottt sttt ettt 22
5-6 Register indirect with indexed addreSSingceecueeeiierieniiriiiiieeeeeeee e 22
6 INSrUCLION FOTMALS ...c.uiiiiiiiiiieii ettt et ettt et ee s ebe e b e e 23
0-1 Data fOTMALScueiiiieiie ettt ettt e st e bt e bt e sabe e beeeaee e 25
0-2 ENAIAN ..ottt sttt 26

Chapter 2 Instruction Description

INOTATIONS .ttt ettt ettt ettt ettt sttt et eb e bt et saeesb e e st e eb s e sbe e et satesbeenbeeatesbeensesanens 30
Transfer instructions
MOV REEZL, REE2 ..ttt ettt et e st e st e eabeeearee s 33
MOV MM, REE .ttt ettt e ettt e et e b e e nseesnee e 33
MOV MSP, An <Privileged INStrUCtION™cceeoiiiiiiiriieiieeieeitesie ettt 34
MOV Am, MSP <Privileged INStruction™..........cccceeiiiiiiniieiieiieriieeie et 34
MOV SSP, An <Privileged inStruction™cccccoiiiiiieiiienieniieieeriie ettt 35
MOV Am, SSP <Privileged inStruction™ccccceevuieiienieniieiieniiesie et 35
MOV USP, An <Privileged INStruCtION™ccceeviiiiieiiieiieiie ettt 36
MOV Am, USP <Privileged INStruCtion™cccceeviiiriienienieeiieiiesiee et s 36
MOV EPSW, Dn <Privileged inStruction™cccceeruierieriieniienie e eitesiee e ens 37
MOV Dm, EPSW <Privileged inStruction™.............ccceerierieniriiiieiienieeeie e sneeeeens 37
MOV PSW, Dn <Privileged inStruction™ccccoovueriiieiiienienieeieeieesiie e e 38
MOV Dm, PSW <Privileged InStruction™cceevierierienieiiiieiieniiesie e 38
MOV MDR, DLttt ettt ettt sttt e nbenbe b e 39
MOV DIy MDR oottt ettt sttt 39
MOV IMIN, SP ettt e e e e e ettt e e s s e s e bt et e e e s e s sesaataeeeeeessaaes 40
MOV REEZ, SP ..ttt et e ettt e et e st e e abeesabeesaeee s 40
MOV SP, REZ ..ttt ettt e et e st e et e st e e sneees 40
MOV imm, MDRQ ...ttt et et be e e aae e e ae e e abeeennee s 41
MOV MDRQ, RI ..ottt sttt 41
MOV Rm, MDRQ ...ttt sttt sttt ettt 41
MOV 1M, MCRHoooiiiiiiieeeeeeee ettt ettt ettt e e e e s e s s eabare e e e e esans 42
MOV MCRH, RN .ottt 42
MOV R, MCRH ..ottt st 42
MOV IMM, MOCRL ...ttt e et e e s s s esaaae e e e e s sesnaans 43

<Table of Contents - 3>

Table of Contents

MOV MOCRL, RN ..ottt ettt st ettt et s nbe e 43
MOV RN, MOCRL ...ttt st sttt 43
MOV IMIM, MOVE ettt ettt ettt e e e e s s s saaa e e e e s e esaans 44
MOV MCOVE, RIN ..ottt sttt ettt st 44
MOV Rm, MDRQ ..ottt sttt ettt 44
MOV PG, AN ettt ettt sttt et ettt st 45
MOV MEIM, REEG ...ttt sttt et e st e e s 46
MOV REEZ, MEIM ...ttt ettt ettt e st e st e st e e eesabeeesanee s 48
MOV (RM+,1mm), RN ettt 50
MOV (RMH), RN ettt st 50
MOV Rm, (RNHF,1MM) Lottt e ve e et s b e eaaeesaveeeaaaesaree s 51
MOV R, (RN) ettt sttt ettt st 51
MOVU MM, REE .ottt ettt ettt st et esateenbeessaeeneaens 52
MOVHU Mem, REEeiiiiiiiiiieeeeee ettt ettt et s 53
MOVHU ReEZ, MEIM ..ottt ettt ettt st e st e et eeateesneees 55
MOVHU (Rm+, imm), RN ..ot 57
MOVHU (RMH), RN ittt st 57
MOVHU Rm, (ROF, TMIMN) c.eiiiiiiiiiicceece e e et eaaeeeanee s 58
MOVHU (RMH), RN ittt st 58
MOVBU Mem, REEZeeieiiiiiiiii ettt ettt e s 59
MOVBU REZ, MEM ..ottt ettt sttt st e et eesneees 60
MOVM (SP), 1828 (SP 1€1atiVE)eeeiiiiiiiiieiiieieeee ettt ettt 61
MOVM regs, (SP) (SP relatiVe) ...cceieiuieiiieiieie ettt e 63
MOVM (SP), 1828 (SP 1€1atiVE)eeeiiiiiiiiieiiieieeee ettt ettt 65
MOVM regs,(USP)(USP relative<Privileged instruction™)ccceeceevverienieesieeneenenens 67
EXT REE eeeeeiiiieeite ettt ettt et e st e et e et e st e e st e st e e e baeesaeeas 69
EXTH REZ ..ottt ettt et sttt et st s bt et nae 70
EXTH ReZL, REZ2 ...ttt ettt et 70
EXTHU Rttt sttt ettt ettt sttt e naeas 71
EXTHU ReEZL, REZ2 ..ottt ettt ettt et e e e e 71
EXTB REE ittt ettt ettt sttt et st sbe e et nae 72
EXTB RegL, REZ2 ..ottt ettt ettt e e 72
EXTBU REEZ .ottt sttt ettt ettt et e b eitenaeas 73
EXTBU RegL, REE2 ..ottt ettt ettt et e s 73
EXTBU REEZ .ottt sttt ettt sttt st sbe b eatenaeas 74
DICPF MEIM ...ttt sttt et sttt b et st be et saee 75

Arithmetic instructions
ADD Reg1, REZ2 ..ottt 76

<Table of Contents - 4>

Table of Contents

ADD Regl, Reg2, REE3 ...oooiiieiie ettt e e s e e ennee s 76
ADD MM, REZ ..viiiiiiiieiiiee ettt et e e e e e be e entaeeenneeens 77
ADD M, SP ettt ettt et et e e e et e e e e e e e e e e ———— 77
ADDC ReEZI, REE2 ...ttt ettt e st e e st e e ebeeessaeeeaaeesnneeennnee s 78
ADDC Regl, Reg2, REE3 ..ottt e et re e et e e e e e snaeeennaee s 78
ADDC MM, REE .ttt ettt e e e e st e et e e e snee e nbaeeneeas 79
SUB REZ1, REE2 ...ttt ettt te e et e e et e e ensaeeenaeaeenseeennnes 80
SUB Regl, Reg2, REE3 ..ottt ettt e e et e e e 80
SUB MM, REZ ...ttt et e e st e et e e e e e e snseeennees 81
SUBC ReEZI, REE2 ..ottt ettt et e et e e et e e enaeeeenneeennees 82
SUBC Regl, ReE2, REE3 ...co ittt ettt et e et e e e e e s 82
SUBC MM, REE ..vviiniiiieiiieee ettt st e e seae e esae e eseeesaseeenseeennes 83
MUL ReEZI, REE2 .ottt e e et e e e st e e e s eaateeesensteeeeennes 84
MUL Regl, Reg2, Reg3, REZ4Aoooiiiieeeee ettt ettt et e e aaee e 84
MUL MM, REE ..ttt et et ste e et e e esta e e eseeessaeeenseeessaeensneens 85
MULU REZL, REE2 ...ttt ettt e et e e e sttt e e e snateeesennaeeeennnes 86
MULU Regl, Reg2, Reg3, REZ4Aeoeiiieeeiee ettt e 86
1AV L0 5L O 555 s s R 2 USRS 87
DIV REEL, REEZ2 ..ottt ettt e e ettt e e e st e e e senateaessntteeeenes 88
DIVU REZL, REE2 ...ttt ettt e et e e e st e e s snbteeeeanes 89
INC RO ittt et s e e st e e st e e sbeeesaaeeesseeesseeensseessseesnnseesaneens 90
INCA REE ettt et et b e st e bt et e bt ebeenaeesaee 91

Compare instrucitons
CMP REZL, REZ2 ..ottt et e et eetae e essaeeesseeeesseeennseesnneens 92
L1 S 11301 4o T T TR PSR 93

Logical instructions

AND REZL, REZ2 .ottt ettt ettt e s e et e et e e ensaeeensaeennseeennseeen 94
AND Regl, Reg2, REE3 ...oooeiieiie ettt e e s e e ennee s 94
AND 1M, REZ ..iiiiiiiiiciiiee ettt e e e st e et e e s ae e naeeensaeeenseeens 95
AND imm16, PSW (Privileged INStruCtion)ccceevveeriieeiiieeiieenieeeieeeee e svee e 96
AND 1imm32, EPSW (Privileged IStruction)cccveeeiieeiieeeiieerieeeieeeee e svee e 96
(0 N 7o B 2 USRS 97
OR Regl, Reg2, REE3 ...ttt e ettt e e e e e e snnaees 97
OR MM, REZ ..ottt e e et e e st eessbeeesaeeensaeennneeees 98
OR 1mm16, PSW (Privileged INStruCtion)cceeevieeriieeiiieeieeeiee et esie et eiee e 99
OR 1mm32, EPSW (Privileged INStruCtion)coccuieeiiiieiiieiiieeiieesiee e eee e saee e 99
XOR REZI, REE2 oottt ettt et e sbe e e e e enbeeeneaeeenneeeennes 100

<Table of Contents - 5>

Table of Contents

XOR Regl, REZ2, REE3 ...ttt ettt ettt et e et eeanee e 100
XOR MMM, REZ ittt et ettt ettt enneas 101
INOT R ettt ettt e et e st e sttt e st e e s bt e e sabeeesabeeenseeeas 102

Bit manipulate instructions

BTST MM, REE .eoeueiiiiiiiieiiee ettt sttt et eneeas 103
BTST IMIN, MEM.eiiiiiiiiiiiiiiiiiiiiiieee ettt e ettt e e e e s e e sab e e e e e s s e ssaaaaaeeeaseeas 103
BSET ReEZ, IMEIM ...eeiiiiiiiiiiieie ettt et ettt et e st e e e e s 104
BSET IMIMN, MEM ..uiiiiiiiiiiiiiiiiiiiiiieeeeeeeeteeee ettt e ettt e e e s s e e eaab e e e e e s s e ssnaaaaeeeaseeas 105
BCLR ReZ, MEIM ..ottt ettt sttt ettt e s e 106
BCLR IMI, IMEIM ouviviiiiiiiiieeceteeee ettt ettt e ettt e e e s s e sesaaaaeeeessssessaaaeeeessssanns 107

Shift instructions

ASR REZL, REE2 ..ottt ettt et 108
ASR Regl, Re@2, REE3 ..ottt et st e e 109
ASR MM, REE...iiniiiiiieiie ettt et ettt e 110
LSR REZL, REEZ2 .ottt ettt et et e s s 111
LSR Regl, ReZ2, REE3 ...oooiiieee ettt st 112
LSR MM, REE ..eviiiiiiiieieee ettt ettt e enne s 113
ASL REZL, REE2 ..o ettt ettt s s 114
ASL Regl, Reg2, REE3 ...ttt sttt e 115
ASL MM, REZ .ot e 116
ASL2 REE ettt ettt ettt ettt ettt et e et e e ab e st e e e bt e e s bt e e nabeeenabeeeaaee 117
ROR REE ..ttt ettt ettt e st e st e et e et eesbee e s 118
ROL REE ..ttt ettt ettt e sbt e e st e et e et e e saeee s 119

BCC (A8, PO ettt ettt e et ettt eneas 120
L ettt et e et s e et e et e et e e sateesaaee 121
SETLB ..ottt ettt ettt e et e s et e e bt e e et e e bt e st e enbeeeateenbeensaeenteennaeenne 122
TIMIP (ANL) ettt ettt ettt et e ettt e et e e b e nte et e e aeeenbeenneas 123
TMP (A16, PC) et ettt ettt et e st beesaaeebeeeneas 123
TJMP (A32, PC) ettt ettt ettt e st e b e esaeesaenbeessesseenaeennennas 124
CALL (d16, PC), regs, IMMSeeiiieiiiiiieiieiie ettt eee ettt et ebe e s aeebeeneeas 125
CALL (d32,PC), 1egs, IMIMSc.eeeiiieiiiiiieiieniie et eiieete et siteete et e saaeenseeseeesaaeeseenseas 126
CALLS (A1) 1ottt t et stt et e esaesaeenseesee s e essessaenseessensaensesssenseensensaensens 127
CALLS (A16, PC) ittt ettt ettt ettt eaessaebeesaessaenseensesnnensens 128
CALLS (d32, PC) ettt ettt ettt ettt seeaeesaeseesaessaeseensessnensens 128
RET 1€gS, MM ..ottt ettt ettt ettt e et e et e s aneenbeenneas 129
RETE ettt ettt ettt et e bt e e bt e s st e e abeesaeeenbeessbeeaseessaennnas 130

<Table of Contents - 6>

Table of Contents

RE T S e ettt ettt ettt et e bt e at e s et et e e ae e e ae e bt enteeate bt enteeneenees 131
RTT (Privileged INStIUCLION)cccuviieiieeeiieeiieeeiee et e eiteesteeeite e et e eseaeeesaeessseeesaeesnneeenne 132
TRAP ettt ettt et ettt et e et e bt e at e h e et e nt e bt et e eaeeteeneeeneen 133
INOP ettt ettt ettt ettt e h et e a e e h e et e n e eae e bt enteene e bt enteeaeenee 134
SYSCALL MM ..ottt ettt ettt ettt et sae et e et esaeeneesaeenes 135

Extension operation instructions

DMULH R, RN ettt ettt sese e e e saeennaas 137
DMULH Rm, Rn, RAT, RA2 ...coooiiiiiiieeeeeee et 137
DMULH MM, RN .ottt ettt saeene e saeeeaeesseenneas 138
DMULHU R, RN oottt ettt et et saae e aaeenna s 139
DMULHU Rm, Rn, RAT, RA2....ccciiiiiiiiiieeeeeee e 139
DMULHU MM, RN coeiiiiiiiiiciiece ettt ettt eiae e e s saeenneas 140
DMACH Rm, RN, Rd .ottt 141
DMACH R, RN .ottt ettt ssa e e e esaeessneenne s 141
DMACH 1mMM, RN ottt ettt e e aeeaeesnnas 142
DMACHU Rm, RN, RA oottt s s 143
DMACHU R, RN ettt ettt ve e 143
DMACHU MM, RN ..ttt ettt sae e aae s aeesveeneas 144
MAC Rm, R, RAT, RA2 ..ottt et s 145
MAC RIM, RN oottt ettt et eeaeessaeesbaeaeeenseenneas 145
MAC IMIM, RN ettt ettt et b e e beesteeesaeesseessaeesseenseas 146
MACU Rm, R, RAT, RA2 oot 147
MACU RIM, RNttt ettt ettt e saaeesbe e sbeeeseeseeennas 147
Y NG W5 ' s T 2 o AU POPRRRRRRN 148
MACH RIM, RN ottt ettt ettt saa e e e e saeeeseeaeeennas 149
MACH Rm, R, RAT, RA2 oottt 149
MACH MM, RI1 oot e e ettt e e e e e esstbareeeeessenanes 150
MACHU R, RN ettt ettt easeessaeseaeenne s 151
MACHU Rm, R, RAT, RA2 .ot 151
MACHU MM, RN ¢ttt et sae b e saeeaseeneesneas 152
MACB RN, RN ettt ettt et eesse e saeeane s 153
MACB Rm, RN, Rd oottt s 153
MAGCB TN, RIL.co ettt e et eeeeaaas 154
MACBU R, RN ottt et eaeeneeneas 155

<Table of Contents - 7>

Table of Contents

SAT16 OP2 Rml, Rnl, Rm2, Rn2

<Table of Contents - 8>

MACBU Rm, R, Rd .ot e 155
MACBU MM, RIL .ottt ettt e et e s s e s eaaaae e e e e e 156
SWHW RN, RN .ttt et et 157
SWAP RIM, RN .ottt st ettt e 158
SWAPH R, RN .ottt sttt et 159
SATIO R, RN oottt sttt e 160
SAT24 R, RN .ottt ettt st ettt 161
MCSTE R, RN ettt ettt e enneas 162
MCSTE MM, RN ceiiiiiiiiiiieeeceeeeeeeee ettt ettt e ettt e e e s e e saaaeeeeaeeeas 164
BSCH R, RN ittt ettt et e eaneas 166
BSCH Rm, R, Rd oot 167
LIW instructions
ADD OP2 Rml, Rnl, Rm2, RN2 ..o 168
ADD OP2 Rml, Rnl, imm, RN2ccccooiiiiiiiiiieieee e 169
ADD OP2 imm, Rnl, RM2, RN2cccoiiiiiiiiiieeeee et 170
ADD OP2 imm, Rnl, imm, RN2ccoooiiiiiiiiiii e 171
CMP_OP2 Rml, Rnl, RM2, RN2 ..ot 172
CMP_OP2 Rml, Rnl,imm, RN2cccccoiiiiiiiiiice e 172
CMP_OP2 imm, Rnl, Rm2, RN2ccoccoiiiiiiiiiiiiieeeee e 173
CMP_OP2 imm, Rnl, imm, RN2cccociiiiiiiiie e 173
SUB OP2 Rml,Rnl, RmM2, RN2 ...cooiiiiiiiiiiieeeeeee e 174
SUB OP2 Rml, Rnl, imm, RN2ccccoooiiiiiiiiiiiicieceee e 175
SUB OP2 imm, Rnl, RM2, RN2ccoiiiiiiiiiiiiiiceceee et 176
SUB_OP2 1imm, Rnl, imm, RN2......cccccoiiiiiiiiiiiiiie et 177
MOV _OP2 Rml, Rnl, RM2, RN2 ..ccoooiiiiiiiieeeeeee e 178
MOV _OP2 Rml, Rnl, imm, RN2cccocoiiiiiiiiiiee et 179
MOV _OP2 imm, Rnl, RM2, RN2cccoiiiiiiiiiiiicceceeee e 180
MOV _OP2 imm, Rnl, imm, RN2cccoiiiiiiiiie e 181
AND OP2 Rml,Rnl, Rm2, RN2 ..cccoiiiiiiiiieeeeeeeee e 182
AND OP2 Rml, Rnl, imm, RN2cccoiiiiiiiie e 183
OR OP2 Rml1,Rnl, RM2, RN2 ...ocoiiiiiiiiiiiiiceece ettt 184
OR _OP2 Rml, Rnl, imm, RN2ccccoeiiiiiiiiiiceeece e 185
XOR OP2 Rml, Rnl, RM2, RN2...ccoocoiiiiiiiiiiicieceee et 186
XOR OP2 Rml, Rnl, imm, RN2cccooiiiiiiiiiiieeeeeeeee et 187
DMACH OP2 Rml,Rnl, RmM2, RN2 ..ot 188
DMACH _OP2 Rml, Rnl, imm, RN2ccccooiiiiiiiiieiieciececeeee e 189
SWHW _OP2 Rml,Rnl, RM2, RN2cccooiiiiiiiiiiiiicececeeeee e 190
SWHW _OP2 Rml, Rnl, imm, RN2cccoooiiiiiiiiiieee et 191
192

Table of Contents

SAT16 _OP2 Rml, Rnl, imm, RN2......cccooiiiiiiieiieiee e 193
OP1_ADD Rml, Rnl, RmM2, RN2ccciiiiiiiiiiiiiieeeeeeee et 194
OP1_ADD imm, Rnl, RM2, RN2 ...ccccooiiiiiiiiiiiiciececcee e 195
OP1_ADD Rml, Rnl, imm, RN2cccciiiiiiiiiiiiiiiiccce et 196
OP1 _ADD imm, Rnl, imm, RN2cccccoiiiiiiiiieeeece e 197
OP1 _SUB Rml, Rnl, RM2, RN2ooooiiiiiiiiiiiiiiccieeeeete e 198
OP1_SUB imm, Rnl, RM2, RN2cccooiiiiiiiiiieieeeeeeeee et 199
OP1 SUB Rml, Rnl, imm, RN2cccooiiiiiiiiiieeeee e 200
OP1 SUB imm, Rnl, imm, RN2cccciiiiiiiiieeeee e 201
OP1_ CMP Rml,Rnl, RM2, RN2 ..ot 202
OP1_CMP imm, Rnl, RM2, RN2cccooiiiiiiiiiiiiicieceeeeee ettt 202
OP1 CMP Rml, Rnl, imm, RN2 ...cccoiiiiiiiiiiieceeee e 203
OP1 CMP 1imm, Rnl, imm, RN2ccccooiiiiiiiieeeeeeeee et 203
OP1_MOV Rml, Rnl, RM2, RN2cccoiiiiiiiiiieiieeececteee et 204
OP1_MOV imm, Rnl, RmM2, RN2 . ..o 205
OP1 MOV Rml, Rnl,imm, RN2ccccooiiiiiiieeeeee e 206
OP1 MOV imm, Rnl, imm, RN2ccccooiiiiiiieeeee e 207
OP1_ASR Rml,Rnl, RM2, RN2 ...cooiiiiiiiiiiiicececce ettt 208
OP1_ASR imm, Rnl, RM2, RN2cccooiiiiiiiiiiieiccecee e 209
OP1 _ASR Rml, Rnl, imm, RN2ccccooiiiiiiiieeeeee e 210
OP1 _ASR imm, Rnl, imm, RN2cccoiiiiiiiiieeee e 211
OP1 LSR Rml, Rnl, RM2, RN2 ..ottt 212
OP1_LSR imm, Rnl, RM2, RN2ccccoiiiiiiiiiiiicieceee e 213
OP1_LSR Rml, Rnl, imm, RN2cccccciiiiiiiiiiicieceee et 214
OP1 LSR imm, Rnl, imm, RN2ccooiiiiiiiiiieceeeeee et 215
OP1_ASL Rml, Rnl, RM2, RN2ccoiiiiiiiiiiiiiiiiieeieeteee ettt 216
OP1_ASL imm, Rnl, RmM2, RN2 ...cccoiiiiiiiiiiieeeeee et 217
OP1_ASL Rml, Rnl, imm, RN2cccoooiiiiiiiiiiiciceeeee e 218
OP1_ASL imm, Rnl, imm, RN2cccooiiiiiiiiiiiiieeeeeeeeee e 219
MOV _Lee (Rm+, 1Imm), RN coeiiiiiccceecee e 220
UDF instructions
UDFO00 Dm, Dn (MULQ Dm, D) ...coooviiiiiiiieiiecieeieece et 222
UDFO00 imm, Dn (MULQ 1mm, D) ...ccccoeiiiiiiiieiieeieeeeeeesee e 222
UDFOI Dm, Dn (MULQU Dm, DN) ..c.coooviiiiiiiieiiecieeeeieee et 223
UDFUOl imm, Dn (MULQU 1imm, DN)....cccooiiriieiieiiecieeieereeieeeee e 223
UDF02 Dm, Dn (MCST32, MCST16, MCSTS) ...ceovieiieeiieiieeieeeeere e 224
UDFO03 Dm, Dn (MCSTO DN .oviiiiieieeieeeeteee ettt et s s 226

<Table of Contents - 9>

Table of Contents

UDF04 Dm, Dn (SAT16 D, D) c..oooiiiiiiiieieeeeeeeeee et 227
UDFO05 Dm, Dn (SAT24 D, D) c.oooiiiiiiieieeeeeeeee et 228
UDF06 Dm, Dn (MCSTA48 D) ..ottt 229
UDF07 Dm, Dn (BSCH Dm, D) ...oooioiiiiiieeieeeeeeeee e e 230
UDFO08 Dm, Dn (SWAP D, D) c.coouiiiiiiiiiieeiee et 231
UDF09 Dm, Dn (SWAPH Dm, D) ..ccoooiiiiiiiiieieeeeeeeeee et 232
UDFI12 Dm, Dn (GETCHX D) ..oouiiiiiiiiieieeeeee et 233
UDFI13 Dm, Dn (GETCLX DN ..otoiiiiiiieiiesieeieeiese ettt 234
UDFI15 Dm, Dn (GETX, DN ettt 235

Floating-point operation instructions

FMOV Mem, FSN.co.oiiiie et 236
FMOV FSM, MEM ...ttt 237
FMOV (RM), FSIN et 238
FMOV (Rm+, Imm), FSN .o 239
FMOV FSM, (RINF) ettt 240
FMOV FSm, (RN, MMttt 241
FMOV FSM, FSN.iiiii ettt ettt 242
FMOV FSM, RN ettt s 242
FMOV RIMLEFSD (et 243
FIMOV I, ST ettt e e e e e e et eeeens 243
FMOV FPCRRIN Lottt st s 244
FMOV RIMLFPCR ..ottt 245
FMOV IMMFPCR L.ttt e 246
FMOV MEM,FDN ..ottt e 247
FMOV FDIMMEM ..ottt ettt 248
FMOV (RMA),FDN ittt s 249
FMOV (Rm+,imm),FDn ..o 250
FMOV FDIML(RI) ottt st s 251
FMOV FDM,(RNH,IMIMN) ottt 252
FABS FSI.ce ettt et et 253
FABS FSM, FSN oottt 253
FNEG FSI et ettt et sttt e 254
FNEG FSMm, FSDN oottt e 254
FRSQRT FSI..tiieee ettt sttt 255
FRSQRT FSm, FSN ..ot e 255
FCMP FSMI, FSM2 ..ottt st e 257
FCMP 1mm, FSIM oo 257
FADD FSm, FSN .ottt 260

<Table of Contents - 10>

Chapter 3 Directions for using instructions

Table of Contents

FADD FSm1, FSM2, FSN ..oiiiiiiiiiiiceeeeeee ettt s 260
FADD 1mMm, FSIM, FSN oottt e e e 261
FSUB FSmI, FSM2, FSN..coiiiiiiiiiieieeeeee ettt e neas 263
FSUB FSM, FSN oottt ettt e e e enne s 263
FSUB MM, FSIMN, FSI oottt 264
FMUL FSM, FSN ettt ettt s eeaeeneeennas 266
FMUL FSMI, FSM2, FSN..oiiiiiiiiiiiicieeieee ettt 266
FMUL 1imm32, FSM, FSN c.ooiiiiiiii ettt 267
FDIV FSM, FSN.eiiiiiiiiiiiece ettt ettt et e e e s saeennaes 269
FDIV FSMI, FSM2, FSN ..oiiiiiiiiiiieeeee ettt 269
FDIV 1mm, FSM, FSN.eoiiiiiiiiceeee ettt e e e e 270
FMADD FSm1, FSM2, FSM3, FSN...oootiiiiiiieeeeeeeceee et 272
FMSUB FSm1, FSm2, FSM3, FSN...ocoiiiiiiiiiiieeeeeeeee e 278
FNMADD FSm1, FSM2, FSM3,FSNoiiiiiiiiiiiieieeeeeeeee e 284
FNMSUB FSm1, FSM2, FSM3,FSN ...ttt 290
FBCC (A8, PC) ittt ettt ettt et et eesae s e sssaessaeesaeenneas 296
FLCC ettt ettt e et e b e e te e e b e esaeesbeesseessbeesaessseenseessseenseas 297

Cautions fOr PrOZIramMIMINGcc.eevieiiiieriienieeieeieeete et esttesteeteesteeseeesnbeebeesseeeseenseessseenseas 300
1 Pipelineg archit@CtUIEcueeiuiiiiieiieeieeiee ettt ettt e 301
1-1 Pipeline OPETationcccecuieiiieiiieiiieniieeieeeie ettt ete et eeseeeete et e sateebeesaaeenbeesseesnseens 301
1-2 Pipeline operations of operations between re@iStersooveverviereeneneeneneenennens 302
1-3 Pipeline operation of data 10ad...........c.oocuieiiiiiiiiiiiii e 302
1-4 Pipeline operations of data StOTcc.eevieeriieriiieiiieriieeieeie et 303
1-5 Branch pipeling OPEIationscc.eeeuieeieeriieriieeiieieeriie ettt siee sttt e seeeeteebeeseeeeaeeens 303
1-6 Pipeline operations of SETLB and LCCccooiiiiiiiiiiniiiieieeee e 304
1-7 Number of instruction eXecuting CYCIESccceeuiriiriieiienieiiieie et 305
1-7-1 No dependence between INSIIUCTIONSccueerieeriieriieeiienieeieeieesee e seeeeeens 305

1-7-2 Register dependence between InStruCtions...........ocueeveereeriieeriieneeeieeieesie e 306

1-7-3 Flag dependence between INStrUCtIONSccueereeeriieriienieiieeieesiee et 308

1-7-4 When the FPU instruction is subsequent to CPU load/store instruction............. 309

2 Cautions on the inStruction deSCIIPLIONcc.eeiiieriieiieeiierie ettt ettt 310
3 Recommendations on Instruction deSCriptionceeueeeieeriienieeiieeniienieeieesee e 311
3-1 Instruction assignment subsequent to branch InStructionccccevvevervenerieenennns 313
3-2 Instruction assignment subsequent to SETLBcccociiiiiiiiiiiiiiieeeeeee 316
3-3 Assignment of the instructions preceding RETFccoccoiiiiiiiiiiiiiieeee 317
3-4 Assignment of the instructions of CALL/CALLS branch targets...........ccccecueeueennenn. 321

<Table of Contents - 11>

Table of Contents

Chapter 4 Appendix

INSTIUCHION CYCLE ..ottt ettt ettt e et e et eseaeeateenseesnseennnas 324

INSTIUCTION SEL.....tiiiieeiiieiie ettt ettt ettt et ettt et e st et e st e esbeeeabeebeesnbeesseeenbeesseesnseenseennnas 343

INSTIUCTION MAP ...eiiniiieiiieiie ettt ettt e bt et e st e e beeeabeenbeesnteenseesseeenseenseesnseennnas 377
INDEX

5316 1o PSPPSR 388

<Table of Contents - 12>

Chapter 1 Instruction Introduction

Chapterl Instruction introduction

Instruction system

32-bit microcontroller MN103E series is a upward microprocessor core of our 32-bit microcontroller
MN103S series. This has the instruction extended in MN103E series as well as the MN103S-series
instruction set and can be designed for a wide range of applications from information processing to
signal processing. It consists of MN103E extending part to implement architecture extension,
MMU, cache memory, FPU, and bus control circuit as centering a compact 32-bit CPU core with the

instruction set having 1-byte basic instruction word length.

CPU core
AM33-1, AM33-2, AM33-2A and AM34-1 are the 32-bit microprocessor cores of Matsushita-
original C language-oriented 8/16/32 bit microprocessor AM series. The instruction specification is

partly different depending on the microprocessor core. Each core is defined as shown below.

AM33-1...32 bit processor-typed microprocessor core.
This consists of MN103E extending part to implement architecture extension, MMU,
cache memory, and four modules of the bus control circuit.

¢

AM33-2...32 bit processor-typed microprocessor core.

This consists of MN103E extending part to implement architecture extension, MMU,

cache memory, and four FPU modules..

¢

AM33-2A...32 bit processor-typed microprocessor core.
This consists of MN103E extending part to implement architecture extension, MMU,

6

and three modules of cache memory.

AM34-1...32 bit processor-typed microprocessor core.
This consists of MN103E extending part to implement architecture extension, MMU,

cache memory, and four FPU modules.

¢

This manual describes mainly AM33-1 microprocessor core, and when each microprocessor core has
different specifications, it shows the specifications with the above microprocessor core marks.

2 Instruction system

Chapterl Instruction introduction

Register set
|

The register set is divided into a basic register set and an extending register set for the extension

operating instruction implemented in MN103E series.

2-1 Basic register set

The basic register set consists of the followings: data register for operations such as addition and
subtraction, address register for pointers, extension register capable of general-purpose use, stack
pointer, program pointer, processor status word, multiply/divide resister, loop instruction register,
loop address register. It highly contributes to compressing the instruction code size and improv-
ing the performance, and enables programming by high-level languages such as C language.
Especially, the data register and address register are comprised of banks and can have different
registers between the user and supervisor levels. Total of 16 registers in the data register, address
register and extension register can be used as flat general-purpose registers. (indicated as Rn for
convenience in writing .)

Address register (Bank 0) Address register (Bank0)

A0 A0
Al Al
A2 A2
A3 A3

31 0 31 0

Data register (Bank0) Data register (Bank0)

DO DO
D1 D1
D2 D2
D3 D3

31 0 31 0

Extension register

Stack pointer(User level) Stack pointer (supervisor level)
| uSP | | sSP |

Program counter Processor status word
| PC | | EPSW |

Multiply/divide register
| MDR |

Loop instruction register

| LIR |

31 0
Loop address register

| LAR |

31 0

Register set 3

Chapterl Instruction introduction

4

2-1-1 Address register

AO0-A3: Address register

Thisresister is mainly used as pointer of the address. In the operational instruction of AM31
compatibility, it can operate only through the instruction for calculating address (Addition and
subtraction, comparison) It is used as address pointer to data in the transfer instruction of AM31
compatibility, and the transfer to the memory is always carried out at 32-bit length. It can be used
as general-purpose register in the extending basic instruction.

The substance of the register is comprised of the two banks that one of them is selected by nAR bit
of EPSW. For the sake of convenience, the register bank, which is selected when nAR bit of
EPSW is"0", is shown as Bank 0O, and the register bank, which is selected when nAR bit of EPSW
is"1", isshown asBank 1. Normally Bank O is called "bank register”, and Bank 1 is called
"alternative bank register". The registers of Bank 0 and Bank 1 cannot be simultaneously ac-
cessed.

2-1-2 Data register

DO0-D3: Dataregister (32 bits x 4)

Thisis an operational register can be used generally for all operations. Operations are carried out
in 32-bit length. When using 8-bit or 16-bit data, changing the data size is performed through
datatransfer to memory or EXTB/EXTH instruction execution.

The substance of the register is comprised of the two banks that one of them is selected by nAR bit
of EPSW. For the sake of convenience, the register bank, which is selected when nAR bit of
EPSW is"0", is shown as Bank 0O, and the register bank, which is selected when nAR bit of EPSW
is"1", isshown asBank 1. Normally Bank O is called "bank register”, and Bank 1 is called
"alternative bank register". The registers of Bank 0 and Bank 1 cannot be simultaneously ac-
cessed.

2-1-3 Extension register

EO-E7: Extension register (32 bits x 8)

Thisis an general-purpose register to store a operation parameter and operation intermediate
result. It is positioned as the extension register of data register (D0-D3) and address register (AO-
A3)in the basic register set, and is used through the extension basic instruction, extension opera-
tional instruction, and DSP extension operational instruction.

2-1-4 Stack pointer

uSPk, sSP: Stack pointer

Thisis aregister to store a pointer indicating the start address of the stack area. The contents of
the uSP at the user level and the sSP at the supervisor level are used as stack pointer. The execu-
tion of the instruction referring to this register is allowed only at the monitor and supervisor
levels.

Privileged levels
Two kinds of status are defined at the privileged levels. The accessible memory space differs
depending on each privileged level.

Register set

Chapterl Instruction introduction

2-1-5 Program counter

PC: Program counter (32 bits x 1)
This is a register to store the address of the instruction currently being executed in CPU.

2-1-6 Processor status word

PSW: Processor status word

This is a register to show the status of CPU. It stores the flag of the operational result, interrupt
mask level and etc. PSW of AM30 series microprocessor core is extended up to 32 bits and
defined as EPSW in AM33 series microprocessor core. The lower 16 bits are shown as PSW and
are identical to those in the AM30/AM31/AM32 microprocessor cores.

The execution of the instruction referring directly to this register is allowed only at the monitor

and supervisor levels.

< EPSW >
. [l
reserved |FE |ML |nAR |NMID |nSL| T | Isv | S | IE | ™M | reserved |V | C |N Z |
31 21 20 19 18 17 16 15 14 1312 11 10 87 4 3 210

Z: Zero flag
This bit indicates whether the result of an operation is "0" or not.
For details, refer to the operational descriptions of the individual instructions.

N: Negative flag
This bit indicates whether the result of an operation is negative or not.
For details, refer to the operational descriptions of the individual instructions.

C: Carry flag
This bit indicates whether the execution of an operation caused a carry out of the MSB/borrow
to the MSB or not.
For details, refer to the operational descriptions of the individual instructions.

V: Overflow flag
This bit indicates whether the execution of an operation caused an overflow as a value with a
code or not.
For details, refer to the operational descriptions of the individual instructions.

IM2-0: Interrupt mask
These bits store the current asynchronous interrupt mask level. When IE=1, maskable
interrupts with a level higher than that indicated by the IM bits are accepted. If a maskable
interrupt is accepted, these bits are changed to the level of the maskable interrupt that was
accepted after the PSW is saved.

IE: Interrupt enable
This is used to enable the acceptance of asynchronous interrupts, except for nonmaskable
interrupts and reset interrupts. When IE=1, maskable interrupts are accepted. If an
asynchronous interrupt is accepted, IE is set to "0". (disabling maskable interrupts)

S1-0: Software auxiliary bits
These auxiliary bits can be used in any desired fashion by system software and etc.
The application of these bits depend on the content of the software.

T: Trace enable
When T flag is set to 1, a single step interrupt is caused per execution of an instruction.

This bit cannot be normally updated.

Register set 5

Chapterl Instruction introduction

6

nSL: Supervisor level
This indicates the current execution level. When nSL = 0, supervisor level isin effect; when
nSL =1, user level isin effect. When starting up after areset in normal mode, nSL = 0 (i.e.
supervisor level). If an asynchronous interrupt and a synchronous interrupt is generated, nSL
isset to "0" after the EPSW is saved. After returning from the asynchronous interrupt/
synchronous interrupt and restoring the saved contents to the EPSW, the execution level in
effect when the asynchronous interrupt/ synchronous interrupt was generated is restored.
NMID: Nonmaskable interrupt disable
This flag disables the acceptance of nonmaskable interrupts.
When NMID = 0, nonmaskable interrupts are enabled. When starting up after a reset, NMID
=0, that is, nonmaskable interrupts are accepted. |f a nonmaskable interrupt is accepted,
NMID isset to "1" (disabling interrupts).
nNAR: Register bank control
Thisindicates that the register of Bank 1 in the bank portion of the register file (AO-
A3, D0-D3) isto be used. If an asynchronous interrupt/ synchronous interrupt is accepted,
NAR isset to "0" after the EPSW is saved.
ML: Monitor level
Thisindicates the current execution level. ML = 1 isthe monitor level and ML = 0 is non-
monitor level. ML has priority over PSW.nSL.
EPSW.ML isfixed to "0" in anormal mode. Accordingly, it cannot become to the monitor
level. In adebug mode, if the monitor interrupts are caused, ML isset to "1" (monitor level)
after the EPSW is saved.
FE: FPU enable
This enables the use of the FPU (floating-pint unit) and enables the execution of the floating-
point operating instructions.
When FE = 1, floating-point operating instructions can be executed.
When FE = 0 and floating-point instructions are to be executed, FPU disable exceptions are
generated. For the details of the floating-pint unit, refer to the chapter of "floating-point
unit”.
reserved/ rsv: Reserved field
These are reserved for future functional extension. Reading theses fields always returns a
value of "0". When writing theses fields, aways write "0".

2-1-7 Loop instruction register

LIR: Loop instruction register
This register stores the first four bytes of the branch destination instruction stream when execut-
ing a LOOP instruction. This register is used to speed up the execution of LOOP instructions.
Thisregister is set by the SETLB instruction. This register can also be saved to and restored from
the stack area by using the MOV instruction.

2-1-8 Loop address register

LAR: Loop address register
This register stores the leading address of the instruction stream subsequent to the instruction
stream set in LIR; the jump address+4 of the LOOP instruction.

Register set

Chapterl Instruction introduction

2-1-9 Multiply/divide register

MDR: Multiply/divide register

This register is provided for multiply/divide instructions. This register stores the upper 32 bits of
a 64-bit multiplication result. For a division operation, this register stores the upper 32 bits of the
divided and the remainder (32 bits). For details, refer to the operational descriptions of the

individual instructions.

2-2 Extended register set

The extended register set supports the extended operation instructions that are provided in the
MN103E series.

Extended operationregister
| MDRQ
31 0
Multiply-and-accumulate operationregisters

MCRH
MCRL
31 0
Multiply-and-accumulate overflowflag
0

2-2-1 Extended operation register

MDRQ: Extended operation register

This register is used by the multiply/divide.

This stores the upper 32 bits of the 64-bit multiplication result in multiplication.
This stores the 32 bits of the surplus in division.

2-2-2 Multiply-and-accumulate operation registers

MCRH, MCRL: Multiply-and-accumulate operation registers

These registers are provided as accumulators for the multiply-and-accumulate operation that is
performed by the executed operation unit.

MCRH stores the upper 32 bits of the 64-bit multiply-and accumulate operation result, and MCRL
stores the lower 32 bits of the 64-bit multiply-and accumulate operation result.

For details, refer to the description of the operation of the individual instructions.

2-2-3 Multiply-and-accumulate overflow flag

MCVF: Multiply-and-accumulate overflow flag

This register is used to store the result of overflow detection for the result produced by executing
the multiply-and-accumulate operation instruction.

For details, refer to the description of the operation of the individual instructions.

Register set 7

Chapterl Instruction introduction

2-3 Floating-point register set
|

The floating-point register set is used to execute the floating-point operation instruction in the
floating-point operation unit. This consists of the 32-bit single-precision floating-point registers,
FS0-FS31, and the floating-point unit control register (FPCR) having the operation control and
flag information of the floating-point unit. These floating-point registers can be treated as sixteen
64-bit double-precision floating-point register, FD0O-FD30.

The floating-point register set can be access in the user level.

Floating-pointregister
FS1 FSO
FS3 FS2
FS5 FS4
FS29 FS28
FS31 FS30
31 0 31 0
63 3231 0

2-3-1 Floating-point register

FS0-FS31/FD0-FD30: Floating-point register

This is a general-purpose floating-point register which stores the operation parameter and the
floating-point operational intermediate result of the floating-point operations. This consists of the
floating-point registers comprising 32-bit single-precision floating-point registers, FS0-FS31.
These floating-point registers can be treated as sixteen 64-bit double-precision floating-point
register, FD0O-FD30.

2-3-2 Floating-point unit control register

FPCR: Floating-point unit control register

This is a control register which has the operation control of the floating-point unit and the flag
information. It has the floating-point operation flag and floating-point operational exception flag
as well as controls the rounding mode of the floating-point operation and the floating-point
exceptional operations.

8 Register set

Chapterl Instruction introduction

Instruction functions
I

The instruction set is based on a simple instruction set. A C compiler will produce a generated
code that is compact and optimized from this instruction set.

As the result of that the basic instruction word length is one byte, the instruction set is a simple
one that limits data transfers with memory to load and store operations and it is possible to
minimize the increase in code size due to the assembler program. Furthermore, since the gener-
ated code is compact, more instructions can be placed in the limited cache memory space, result-
ing in an improved cache hit ratio and making it possible to minimize the degradation of perfor-

mance that results from accessing external memory on the event of a miss-hit.

The AM 33 microprocessor core instruction set consists of the following five instruction catego-
ries: basic instructions, extended basic instructions, extended operation instructions, LIW ex-
tended operation instructions, and floating-point operation instructions. The basic instructions
are common throughout the entire AM 30 series; these instructions maintain compatibility
between the different microprocessors in the series. The extended basic instructions are an
extension of the basic instructions for the AM33 microprocessor core; these functions were added
in order to enhance the interrupt functions and to support the extended registers. Functionally,
these instructions are equivalent to basic instructions. The extended operation instructions
provide compatibility with the extended instructions that were implemented in the AM31 micro-
processor core. The LIW extended operation instructions support parallel operations on data.
The floating-point operation instructions provide basic floating-point operations, such as arith-
metic operations that handle single-precision floating-point numbers, multiply-and-accumulate
operations.

The instructions are all listed in the following chart. There are 47 basic instructions, 18 extended
operation instructions, 70 LIW extended operation instructions, and 15 floating-point operation
instructions. (Almost all of the extended basic instructions were implemented as operand exten-
sions, as they have been included in the count of the basic instructions.)

MOV,MOVU,MOVHU,MOVBU,MOVM,

Transfer instructions

EXT,EXTH,EXTHU,EXTB,EXTBU,CLR,DCPF

Arithmetic
operational instruction

ADD,ADDC,INC,INC4,SUB,SUBC,MUL,MULU,DIV,DIVU

Compare instruction

CMP

Logic
operational instruction

AND,OR,XOR,NOT

Shift instruction

ASR,LSR,ASL,ASL2,ROR,ROL

Bit manipulation
instruction

BTST,BSET,BCLR

Branch instruction

Bec,Lcc,SETLB,JMP,CALL,CALLS, TRAP,
RET,RETF,RETS,RTI,SYSCALL

Debug instruction

Pl

NOP instruction

NOP

Instruction functions

Chapterl

10

Instruction introduction

Extended
operational instruction

DMULH,DMULHU,MAC,MACU,MACH,MACHU,
MACB,MACBU,DMACH,DMACHU,SAT16,SAT24,MCSTE,
BSCH,SWAP,SWAPH,SWHW

LIW-typed extended
operational instruction

ADD_ADD,ADD_SUB,ADD_CMP,ADD_MOV,ADD_ASR,ADD_LSR,
ADD_ASL,
SUB_ADD,SUB_SuUB,sSUB_CMP,SUB_MOV,SUB_ASR,SUB_LSR,
SUB_ASL,
CMP_ADD,CMP_SUB,CMP_MOQOV,CMP_ASR,CMP_LSR,CMP_ASL,
MOV_ADD,MOV_SUB,MOV_CMP,MOV_MOV,MOV_ASR,MOV_LSR,
MOV_ASL,
AND_ADD,AND_SUB,AND_CMP,AND_MOV,AND_ASR,AND_LSR,
AND_ASL,
OR_ADD,OR_SUB,OR_CMP,0OR_MOV,0OR_ASR,OR_LSR,0OR_ASL,
XOR_ADD,XOR_SUB,XOR_CMP,XOR_MOV,XOR_ASR,XOR_LSR,
XOR_ASL,
DMACH_ADD,DMACH_SUB,DMACH_CMP,DMACH_MOV,
DMACH_ASR,DMACH_LSR,DMACH_ASL,
SAT16_ADD,SAT16_SUB,SAT16_CMP,SAT16_MOV,SAT16_ASR,
SAT16_LSR,SAT16_ASL,
SWHW_ADD,SWHW_SUB,SWHW_CMP,SWHW_MOV,SWHW_ASR,
SWHW_LSR,SWHW_ASL,

MOV _Lcc

UDF-typed instruction

UDFO00,UDF01,UDF02,UDF03UDF05,UDF06,UDF07,UDF08,UDFQ9,
UDF12,UDF13,UDF15

Floating-point opera-
tional instruction

FMOV,FABS,FNEG,FCMP,FRSQRT,FADD,FSUB,FMUL,FDIV
FMADD,FMSUB,FNMADD,FNMSUB,
FBCC,FLCC

Instruction functions

Chapterl Instruction introduction

3-1 Transfer instructions

. ___|
Transfer instructions are used to transfer data between registers, between memory and registers.
Transfer instructions are grouped as MOV-typed instructions, EXT-typed instructions, and CLR-
typed instructions. MOV-typed instructions provide data transfer functions using various address-
ing modes. Depending on the operation, displacement and immediate values also carry a sign
extension. EXT-typed instructions provide transfer functions between registers with a sign
extension. The CLR-typed instruction clears the contents of registers (by providing a function
that transfer "0" into the registers.) Except for the CLR-typed instruction, none of these instruc-
tions generates any changes in flags.

Instruction Operation

MOV Word transfer between registers, Transfer of immediate values to registers
Word transfer between a register and memory (load/store)
Word transfer with post-increment between a register and memory (load/store)

MOVU Immediate value transfer to registers (immediate value with zero extension)

MOVHU Zero-extension and half-word transfer between a register and memory (load/store)
Zero-extension and half-word transfer with post-increment between a register and
memory (load/store)

MOVBU Zero-extension byte transfer between a register and memory (load/store)
MOVM Block transfer between multiple registers and memory (load/store)

EXT 64-bit signed extension for word data (processing between registers)
EXTH 32-bit signed extension for half-word data (processing between registers)
EXTHU 32-bit zero extension for half-word data (processing between registers)
EXTB 32-bit signed extension for byte data (processing between registers)
EXTBU 32-bit zero extension for byte data (processing between registers)

CLR Data clear (transfers 0 to registers)

3-2 Arithmetic operation instructions

The arithmetic operation instructions perform arithmetic operations on source operands and store
the results in a register. These instructions may cause changes in flags. The "+1" and "+4"
addition instructions, which are frequently used for address calculation, have been established as
separate instructions.

Instruction Operation

ADD Addition between registers, addition between an immediate value and a register

ADDC Addition with carry between registers, addition with carry between an immediate
value and a register

SUB Subtraction between registers, subtraction between an immediate value and a
register

SUBC Substraction with borrow between registers, substraction with borrow between an
immediate value and a register

MUL Signed multiplication between registers, signed multiplication between an
immediate value and a register

MULU Unsigned multiplication between registers, unsigned multiplication between an
immediate value and a register

DIV Signed division between registers, signed division between an immediate value

and a register

Instruction functions 11

Chapterl Instruction introduction

12

DIVvU Unsigned division between registers, unsigned division between an immediate
value and a register

INC Adds "1" to the value stored in a register

INC4 Adds "4" to the value stored in a register

3-3 Compare instruction

The compare instruction compares the contents of two registers, or compares an immediate value
with the content of a register. This instruction is primarily used ahead of a condition branch instruc-

tion. This instruction may cause changes in flags.

Instruction

Operation

CMP

Comparison of the contents of two registers, or the contents of an immediate

value and a register

3-4 Logical operation instruction
. ___|

The logical operation instructions perform logical operations on source operands and store the results

in a register. These instructions may cause changes in flags.

Instruction Operation
AND AND operation between registers, or AND operation between an immediate value
and a register
OR OR operation between registers, or OR operation between an immediate value
and a register
XOR Exclusive OR operation between registers, or exclusive OR operation between
an immediate value and a register
NOT Inversion of all bits in a register (one's complement processing)

Instruction functions

Chapterl Instruction introduction

3-5 Bit manipulation instructions

The bit manipulation instructions perform bit manipulation operations between immediate values and
the contents of registers; between immediate values and the contents of memory, or between the

contents of registers and the contents of memory. These instructions may cause changes in flags.

Instruction Operation
BTST Multiple bit test (between an immediate value and a register, between an

immediate value and memory)
BSET Multiple bit test and set (between a register and memory, between an
immediate value and memory

BCLR Multiple bit test and clear (between a register and memory, between an
immediate value and a register

3-6 Shift instructions

The shift instructions perform bit shifts of the specified amount. Regardless of the amount of the

shift, the instructions can be performed in one cycle. These instructions may cause changes in flags.

Instruction Operation
ASR Arithmetic shift right any number of bits

LSR Logic shift right any number of bits
ASL Arithmetic shift left any number of bits
ASL2 Arithmetic shift left two bits

ROR Rotate right one bit

ROL Rotate left one bit

3-7 NOP instruction

NOP instruction performs no operation.

Instruction Operation
NOP No operation

Instruction functions 13

Chapterl Instruction introduction

14

3-8 Branch instructions

Branch instructions are instructions that change the flow of program execution according to some
conditions. There are two types of conditional branch instructions: normal conditional branch
instructions and loop-only conditional branch instructions. The loop-only conditional branch
instructions minimize the branching penalty and permit fast loop execution by using dedicated
registers. Subroutine calls and returns are a highly functional method of manipulating the PC,
saving /restoring multiple registers to/from the stack, and allocating/releasing stack area.

Instruction Operation

Bcc Conditional branch (branches to PC-relative address)

Lcc Loop-dedicated conditional branch (branches to start of loop set by SETLB)

SETLB Registration of loop start information

JMP Unconditional branch (PC relative, register indirect)

CALL Subroutine call (saves next PC and multiple registers to stack, and allocates stack
area)

RET Return from subroutine (restores stack contents and releases stack area)

RETF Return from subroutine (restores stack contents and releases stack area)

RETS Return from subroutine (restores PC only)

RTI Return from interrupt program

TRAP Subroutine call to a specific address

SYSCALL| System call

3-9 Debug instruction

This instruction is used by debuggers and is reserved for debuggers.

Instruction Operation
Pl This instruction is reserved by a debugger.
Normally, an unimplemented instruction exception occurs when this
instruction is executed.
Instruction functions

Chapterl Instruction introduction

3-10 Extended operation instructions
. ___|

Extended operation instructions are defined for an add-on typed extended operation unit. The

instruction formats are predefined and the instruction map is also reserved. In addition to maintain-

ing compatibility with the extended instructions that were implemented in the AM 31 microproces-

sor core, the

AM 33 microprocessor core also supports dual multiplication/dual multiply-and-

accumulate operations that multiply, in parallel, two 16-bit data values that are packed in word data.

These functions accelerate audio data signal processing.

Instruction Operation
DMULH | Signed dual multiplication between registers, signed dual multiplication between
an immediate value and a register
DMULHU | Unsigned dual multiplication between registers, unsigned dual multiplication
between an immediate value and a register
DMACH | Signed dual sum-of-products operation between registers, signed dual
sum-of-products operation between an immediate value and a register
DMACHU | Unsigned dual sum-of-products operation between registers, unsigned dual
sum-of-products operation between an immediate value and a register
MAC |Signed sum-of-products operation between registers, signed sum-of-products
operation between an immediate value and a register
MACU |Unsigned sum-of-products operation between registers, unsigned sum-of-products
operation between an immediate value and a register
MACH |Signed half-word sum-of-products operation between registers, signed half-word
sum-of-products operation between an immediate value and a register
MACHU | Unsigned half-word sum-of-products operation between registers, unsigned
half-word sum-of-products operation between an immediate value and a register
MACB |Signed byte sum-of-products operation between registers, signed byte
sum-of-products operation between an immediate value and a register
MACBU | Unsigned byte sum-of-products operation between registers, unsigned byte
sum-of-products operation between an immediate value and a register
SWHW | Data ordering swap (half-word reordering within a word)
SWAP | Data ordering swap (byte reordering within a word)
SWAPH | Data ordering swap (byte reordering within a half-word)
SAT16 | 16-bit saturation processing
SAT24 | 24-bit saturation processing
MCSTE | Sum-of-products operation result saturation processing
BSCH | Bit search

Instruction functions 15

Chapterl Instruction introduction

3-11 LIW extended operation instructions

The LIW extended operation instructions perform two operations in a single instruction. For details on
each instruction, refer to the instruction specifications in chapter 2.

Instruction Operation

ADD_OP2| Parallel execution of addition between registers, and OP2
ADD_ADD, ADD_SUB, ADD_CMP, ADD_ MOV, ADD_ASR, ADD_LSR, ADD ASL

SUB_OP2| Parallel execution of subtraction between registers, and OP2
SUB_ADD, SUB_SUB, SUB_CMP, SUB_MOV, SUB_ASR, SUB_LSR, AUB_ASL

CMP_OP2 Parallel execution of comparison between registers, and OP2
CMP_ADD, CMP_SUB, CMP_MOQOV, CMP_ASR, CMP_LSR, CMP_ASL

AND_OP2| Parallel execution of AND operation between registers, and OP2
AND_ADD, AND_SUB, AND_CMP, AND_MOV, AND_ASR, AND_LSR, AND_ASL

OR_OP2 | Parallel execution of OR operation between registers, and OP2
OR_ADD, OR_SUB, OR_CMP, OR_MOV, OR_ASR, OR_LSR, OR_ASL

XOR_OP2| Parallel execution of XOR operation between registers, and OP2

XOR_ADD, XOR_SUB, XOR_CMP, XOR_MOV, XOR_ASR, XOR_LSR, XOR_ASL
DMACH | Parallel execution of signed dual sum-of-products operation between registers,
_OP2 and OP2

DMACH_ADD, DMACH_SUB, DMACH_CMP, DMACH_MOV, DMACH_ASR,
DMACH_LSR, DMACH_ASL

SAT16 Parallel execution of 16-bit saturation processing, and OP2

_OP2 SAT16_ADD, SAT16_SUB, SAT16_CMP, SAT16_MOV, SAT16_ASR,
SAT16_LSR, SAT16_ASL

SWHW Parallel execution of half-word reordering within word, and OP2

_OP2 SWHW_ADD, SWHW_SUB, SWHW_CMP, SWHW_MOV, SWHW_ASR,

SWHW_LSR, SWHW_ASL

1 6 Instruction functions

Chapterl Instruction introduction

3-12 Floating-point operation instructions

Floating -point operations are executed through using the floating-point operation unit. For details

on each instruction, refer to the instruction specifications in chapter 2.

Instruction

Operation

FMOV

Data transfer between floating-point registers, transfer of immediate value to a
floating-point register

Data transfer between a floating-point register and memory (load/store)

Data transfer with post-increment between a floating-point register and
memory (load/store)

Data transfer between a floating-point register and a register

FABS Absolute value operation between floating-point registers
FNEG Sign inversion operation between floating-point registers
FRSQRT |Square root reciprocal operation between floating-point registers (1/+)
FCMP Compare operation between floating-point registers
FADD Addition between floating-point registers, addition between an immediate value
and a floating-point register
FSUB Subtraction between floating-point registers, subtraction between an immediate
value and a floating-point register
FMUL Multiplication between floating-point registers, multiplication between an
immediate value and a floating-point register
FDIV Division between floating-point registers, division between an immediate value
and a floating-point register
FMADD Compound multiplication and addition operation between floating-point
FNMADD | registers
FMSUB Compound multiplication and subtraction operation between floating-point
FNMSUB | registers
FBCC Conditional branch by determining the floating-point conditions. (Branch of the
PC relative address)
FLCC Loop-only conditional branch by determining the floating-point conditions.

(Branch to the loop head set by SETLB)

Instruction functions 17

Chapterl Instruction introduction

18

Memory space
|

Address space when using an MMU (logical address space)

The AM33 microprocessor core supports a 32-bit logical address space, and can access a 4 GB
logical address space. The logical address space is divided into the following six areas: SUO, SU1,
S2, S3, S4, and MO.

0x00000000

SuUo

Instructions/
Data

0x40000000

Su1

Instructions/
Data

0x80000000 -
Instructions/| S2 0x80000000
Data

r——— E xternal memory

ox0o00000 |{Sacheable) : OX9FFFFFFF
Instructions/ S3
Data

(uncacheable)

0xC0000000 s4 0xC0000000
Internal I/O “Intermat-}/@-+4 0xD0000000
0xE0000000 L OxDFFFFFFF
MO
reserved _» reserved
OxFFFFFFFF S : OXFFFFFFFF

Address space (When MMU is on) Physical memory image

The SUO space (0x00000000 to 0x3FFFFFFF: 1 GB) and the SU1 space (0x40000000 to
O0x7FFFFFFF: 1 GB) can both be used at the user level and the supervisor level, and are mapped

onto the physical address space in page units according to the content of the address translation
table.

Caching control for the SUO space and the SU1 space is controlled as follows, according to the
value of the MMUCTR.CE (Cacheable bit Enable) bit:

1. When the MMUCTR.CE bit is set to "0"
SUO space: Cacheable
SU1 space: Uncacheable

2. When the MMUCTR.CE bit is set to "1"
SUO space: Whether each page is cacheable or uncacheable can be individually controlled
through the status of the PTE.C bit.
SU1 space: Whether each page is cacheable or uncacheable can be individually controlled
through the status of the PTE.C bit.
The physical address spaces onto which the SUO and SU1 spaces can be mapped are 0x40000000
to OxBFFFFFFF in external memory for instruction accesses, 0x40000000 to OxBFFFFFFF in
external memory and 0x0xD0000000 to OxDFFFFFFF in the internal I/O space for data accesses.

The S2 (0x80000000 to 0x9FFFFFFF: 0.5 GB) and S3 (0xA0000000 to 0OxBFFFFFFF: 0.5 GB)
spaces are supervisor level-only spaces; the logical addresses are mapped to physical addresses
0x80000000 to Ox9FFFFFFF in a fixed manner.

Memory space

Chapter! Instruction introduction

The S4 (0xC0000000 to OxDFFFFFFF: 0.5 GB) space is a supervisor level-only space; the logical
addresses are mapped to the internal I/O space 0xC0000000 to OxXDFFFFFFF in a fixed manner.

The MO (0xE0000000 to OXFFFFFFFF: 0.5 GB) space is a reserved space and cannot be accessed.

Logical addresses cannot be mapped to the control register space, which is the space with addresses
from 0xC0000000 to OxCFFFFFFF in the internal I/O space. This space can be accessed through the
S4 area at the privileged level or higher.

Pages must be aligned by the page size. The hardware cannot convert addresses properly if page
sizes other than those described above are assigned.

The instruction MMU cannot map the internal I/O space to the SU0/SU1 areas.

Address space when not using an MMU

The AM33 microprocessor core supports a 32-bit address space, and is upwardly compatible with the
AM30/AM31/AM32 microprocessor core and memory map. As shown in the below figure, the
addresses are mapped to the physical address space in a fixed manner.

0x00000000
Data ——
(cacheable) |—
0x20000000
Internal 1/0
0x40000000
-
Instructions/
(cacheable)
0x80000000 0x80000000
External memory
0xA0Q00000 | Instructions/ Ox9FFFFFFF
Data
(uncacheable)
mcmioooo 0xC0000000
Internal I/O > Internal /O~ 0xD0000000
0xE0000000 OXDFFFFFFF
reserved _> reserved
OXFFFFFFFF OXFFFFFFFF
Address space (When MMU is off) Physical memory image

In order to maintain compatibility with the AM30/AM31/AM32 microprocessor core, the internal 1/0
space 0x20000000 to Ox3FFFFFFF is mirrored on 0xC0000000 to 0xDFFFFFFF.

Memory space 19

Chapterl Instruction introduction

Addressing mode
-

There are the following six addressing modes that are frequently used by the compiler.

Data transfer instructions permit the use of six different addressing modes: register direct, immedi-
ate, register indirect, register relative indirect, absolute, and index qualifier register indirect.
Register operation instructions permit the use of two addressing mods: register direct and immedi-
ate.

Register indirect with indexed addressing is used to efficiently access data in an array, etc.

Addressing mode Address calculation Logical address
Register direct Rm/Rn/XRm/XRn
MDR/PSW/EPSW/SP
Immediate value ~ imm8/regs,imm16
imm24,imm32 [-
imm40,imm48
L (Rm)/(Rn)
Register indirect (Rm+)/(Rn+) [Rm/Rm+/Rn/Rn+ | Ej‘> [32-bit address |
31 0 31 0
Register relative d8,Rm)/(d8,Rn [Rm/Am/Rn/An |
()/(d8,Rn) - 5
indirect d16,Am)/(d16,Al i
Ed24 Rrr:)) ((d24 Rrr:)) + (m— |31 32-bit address é
(d32,Rm)/(d32,Rn) [d32/d24/d16/d8 |
d8,d16,d24 : Sign extension 3123 15 70
(d8,PC)
(d16,°C) - PC \
(d32,PC) + Ej‘> [32-bit address |
d8,d16 : Sign extension 31 0
(used only for the branch |31 d32 /1d516 /! d87 (|)
instructions)
(d8,SP) I31 SP (I)
d16,SP
Ed24 Sp; + = | 32-bit address |
' 31 0
(d32,SP) [d32/d24/d16/d8 |
d8,d16,d24 : Zero extension 31 23 15 7 0
(abs8),(abs16)
Absolute (abs24),(abs32) [abs32/24/16/8 | c—) [32-bitaddress |
31 23 15 7 0 31 0
d8,d16,d24 : Zero extension
Indexed register indirect I31 Rm/Rn é
(Ri,Rm)/(Ri,Rn) + Ef‘> [32-bit address |
’ ' - 31 0
I Ri |
31 0

20 Addressingmode

Chapterl Instruction introduction

5-1 Register direct

. __|]
The register-direct addressing mode specifies a register directly. Registers which can be specified are
as follows:

Rm/Rn:

XRm/XRn:

MDR: Multiply/divide register (32 bits)

PSW: Processor status word (16 bits)

EPSW: Processor status word (32 bits)

SP: Stack pointer (32 bits)

5-2 Immediate

The immediate addressing mode directly specifies transferred values through operand value added to
instruction codes , mask value, and multiple registers to be transferred (regs).

The immediate sizes are 8 bits (imm8), 16 bits (imm16), 24 bits (imm24), 32 bits (imm32), 40 bits
(imm40), and 48 bits (imm48).

As shown below, regs (8-bit immediate) can specify the registers of D2, D3, A2, and A3, and other
registers (other, EXREG0O, EXREG1, EXOTHER)

7 6 5 4 3 2 1 0
D2 D3 A2 A3 other EXREGO | EXREG1 |[EXOTHER

other: DO, D1, AO, A1, MDR, LIR, LAR

EXREGO: E2, E3

EXREG1: E4, E5, E6, E7

EXOTHER: EO, E1, MDRQ, MCRH, MCRL, MCVF

5-3 Register indirect

The 32-bit address which is shown by the address register (An/Am) is effective in the register-indirect

addressing mode.

Register-indirect description: (Rm) / (Rn)
(Rm+) / (Rn+)

Addressingmode 21

Chapterl Instruction introduction

22

5-4 Register relative indirect

. __|]
The register relative-indirect addressing mode is addressing shown by addition of the address register
(An/Am) or program counter (PC), stack pointer (SP) and displacement. The displacement sizes are 8
bits, 16 bits, and 32 bits.

Address computations are carried out for the address register (Am/An) or program counter (PC) and
sign-extended 8/16 or 32-bit displacement, and for the stack pointer (SP) and zero-extended 8/16 or 32-
bit displacement.

Register relative-indirect description: (d8, Rm)/(d8, Rn): d8 is code-extended.
(d16, Am) / (d16, An): d16 is code-extended.
(d24, Rm) / (d24, Rn): d24 is code-extended.
(d32, Rm) / (d32, Rn):

(d8, PC): d8 is zero-extended
(d16, SP): d16 is zero-extended.
(d24, SP): d24 is zero-extended.
(d32, SP):

5-5 Absolute

The absolute addressing mode specifies directly a 32-bit address through the 16, 24, and 32-bit operand

value added to the instruction code.

Absolute description: (abs 16): abs 16 is zero-extended.
(abs 24): abs 24 is zero-extended.
(abs 32):

5-6 Register indirect with indexed addressing

The register indirect with indexed addressing is addressing shown by the address register (Rm/Rn) and
data register (Ri). The 32-bit contents of the address registers (Rm/Rn) and data registers (Ri) are
added.

Description of the register indirect with indexed addressing: (RI, Rm) / (Ri, Rn)

Addressingmode

Chapterl Instruction introduction

Instruction formats

There are 14 instruction formats. The instruction set has a variable word length in which the
basic word length is one byte, and the instruction length can vary in units of one byte. The
shortest format is SO format, which is one-byte long. The longest formats are S6 format, D5
format, and T4 format, each of which is seven-byte long.

Format SO

Format S1 | oP [imms/d8 |

Format S2 | oP |mm16/d16/abs16 |

Format S4 | OP |imm32/d32/abs32

Format S6 | OP [mm48

Format DO | op | oP |

Format D1 [op | OP [mms/ids |

Format D2 | oP | OP J[imm16/d16/abs16 |
Format D3 | op | OP imm24

Format D4 [o | OP [mm32/d32/abs32

Format D5 | op | oP [mm4o

Format TO [op | op | oP |

Format T1 | op | OP | oOP [mm8/d8 |
Format T3 | op | OP | OP [mm24/d24/abs24
Format T4 | op | OP | oOP [mm32/d32/abs32
Format QO | op | op | op [oP |

Instruction formats 23

Chapterl Instruction introduction

24

Normally, the opecode is followed by an 8-, 16-, or 32-bit immediate value, displacement value, or
absolute value.

However, in instructions with formats S2, S4, S6, D2, and D5, the opecode is followed by two or more
immediate values, displacement values, or absolute values; theses are noted as a whole as 16-bit imme-
diate values (imm 16), 24-bit immediate values (imm 24), 32-bit immediate values (imm 32), 40-bit
immediate values (imm 40), and 48-bit immediate values (imm 48). According to these notations, the
following instructions accept 16-, 24-, 32-, 40, or 48-bit immediate values.

imml6: RET regs, imm8

RETF regs, imm8

BTST imm&, (d8, An)

BSET imm&, (d8, An)

BCLR immsS, (d8, An)
imm24: BTST imm38, (abs16)

BSET immS8, (absl6)

BCLR immS8, (abs16)
imm32: CALL (dl16, PC), regs, imm8
imm40: BTST imm8, (abs32)

BSET immS8, (abs32)

BCLR immS8, (abs32)
imm48: CALL (d32, PC), regs, imm8

Instruction formats

Chapterl Instruction introduction

6-1 Data formats

There are four data types for integer data: bit, byte, half-word, and word. Byte data, half-word data,
and word data can all be handled as either signed data or unsigned data. In the case of signed data,
the MSB is the sign bit. For floating-point values, there are two formats: single precision floating-
point values and double-precision floating-point values.

Bit (n=0-31)
Unsigned byte |:|

0

7 6
Signed byte

Unsigned half-word | |

15 14 0

Signed half-word | S| |

Unsigned word | |
31 30 0

Signed word | S |

Single-precision floating-point | | |
31 30 24 23
Double-precision | | | 0 |

floating-point 63 62 52 51 0

Integer data in memory must be aligned properly. In short, the two bits on the LSB side of an
address where word data is stored must be "00" (i.e. the address is a multiple of 4), and the one bit
on the LSB side of an address where half-word data is stored must be "0" (i.e. the address is a
multiple of 2). If data that is not properly aligned is accessed, a misalignment exception is gener-
ated.

Floating-point data in memory must also be aligned in a similar fashion. In short, the two bits on
the LSB side of an address where single-precision floating-point data is stored must be "00" (i.e. the
address is a multiple of 4). When double-precision floating-point data is stored in memory and the
double-precision floating-point load/store instruction (FMOV) is being used to access memory, the
three bits on the LSB side of the address must be "000" (i.e. the address is a multiple of 8). When
using two single-precision floating-point load/store instructions to access data, the two bits on the
LSB side of the address must be "00" (i.e. the address is a multiple of 4).

Bit No 31 24|23 16(15 8|7 0
| Memoryaddress | (4n+3) | (4n+2) | (nel) | (4n) |

Word data Address : 4n

Half-word data Address : 4n+2 Address : 4n

Byte data Address : 4n+3 | Address : 4n+2 | Address : 4n+1 Address : 4n

Instruction formats 25

Chapterl Instruction introduction

26

6-2 Endian

The bytes are positioned according to Little Endian format. Therefore, the address of the byte data that
is on the MSB side of half-word data is one greater than the address of the byte data that is on the LSB
side of the half-word data. The address of the byte data that is on the MSB side of word data is three
greater than the address of the byte data that is on the LSB side of the word data. Concerning bit
numbers, in the case of that the bit on the LSB side is regarded as "bit 0", the bit numbers increase
sequentially towards the MSB.

When 16-bit immediate/displacement/absolute (imm16/d16/abs16) and 32-bit immediate/displacement/
absolute (imm32/d32/abs32) follow the opecode, the bytes are partitioned per 8 bits from the lowest,

and positioned in the order from the lower address to higher address. (Little Endian)

[e.g.] 32-bit immediate value, 0x1234567 is arrayed on the memory in the Little Endian format.

Address n 0x67
Address n+1 0x45
Address n+2 0x23
Address n+3 0x01

However, the instructions of S2, S4, S6, D2, D3, and D5 in the instruction formats have above-2
immediate, displacement, and absolute values connected after the opecode, and compose as a whole 16-
bit immediate values (imm16), 24-bit immediate values (imm24), 32-bit immediate values (imm32),
40-bit immediate values (imm40), and 48-bit immediate values (imm48). They are shown below. The
16-bit displacement (d16) and 32-bit displacement/absolute values (d32/abs32) in the below figures are
positioned in the Little Endian format as same as the above example.

RET regs, imm8 / RETF regs, imm8

Address n RET/RETF ... Opecode of RET or RETF
Address n+1 regs
Address n+2 imm8

BTST immS8,(d8,An) / BSET imm8,(d§,An)/ BCLR immS§,(d8,An)

Addressn | BTST/BSET/BCLR | } ...Opecode of BTST or BSET
Address n+1

Address n+2 d8

Address n+3 imm8

BTST imm8,(abs16) / BSET immS§,(abs16) / BCLR immS§,(abs16)

Address n
Address n+1 — BTST/BSET/BCLR—] } ...Opecode of BTST or BSET
Address n+2
Address n+3
Address n+4 imm8

———abs16 ———

Instruction formats

Chapterl Instruction introduction

CALL (d16,PC), regs, imm8

Address n CALL ... Opecode of CALL
Address n+1

Address n+2 abs16

Address n+3 reg

Address n+4 imm38

BTST imm8&,(abs32) / BSET immS8,(abs32) / BCLR immS§,(abs32)

Address n
Address n+1 —BTST/BSET/BCLR—} ...Opecode of BTST, BSET or BCLR
Address n+2
Address n+3

abs32
Address n+4
Address n+5
Address n+6 imm38

CALL (d32, PC), regs, imm8

Address n CALL ...Opecode of CALL
Address n+1
Address n+2
Address n+3 abs32
Address n+4
Address n+5 regs
Address n+6 imm8

Instruction formats 27

Chapter 2 Instruction Description

Chapter 2 Instruction description

Notations
]

The symbols used in the instruction description are shown below.

opl,op2,0p3 : Instruction operation
Regl,Reg2,Reg3,Reg4 :Register (used as the general meaning)
Am, An :Address register (m, n =3-0)

Dm, Dn,Di :Data register (m, n, i = 3-0)
Rm,Rn,Rd,Rd1,Rd2 :CPU general register

A0-A3: Addressregister
DO0-D3: Data register
E0-E7: Extension register

MDR :Multiply divide register

EPSW :Processor status word (32 bits)

PSW :Processor status word (lower 16 bits)
PSW[15:0] = EPSW[15:0]

MSP :Monitor-level stack pointer

SSP :Supervisor-level stack pointer

USP :User-level stack pointer

SP :Stack pointer

(In other words, SP refers to USP when the current level is the user level,

to SSP when it is the supervisor level, and to MSP when it is monitor level.)

PC :Program counter

nPC :Next instruction PC

LIR :Loop instruction register

LAR :Loop address register

MDRQ :Extension multiply register

MCRH :Multiply-accumulate upper 32-bit register
MCRL :Multiply-accumulate lower 32-bit register
MCVF :Multiply-accumulate overflow flag register
TMP :Temporary register

{MCRH,MCRL} :64-bitmultiply-accumulate register

(The upper 32 bits consists of MCRH, the lower 32 bit consistes of MCRL.)
FSm,FSm1,FSm2,FSm3,FSn:FPU single precision register

FDm,FDn :FPU double precision register
Mem :Memory (used as general meaning)
imm :immediate value (used as general meaning)
imm4 :4-bit immediate value

imm3§ :8-bit immediate value

imm16 :16-bit immediate value

imm24 :24-bit immediate value

imm32 :32-bit immediate value

disp :diaplacement

ds :8-bitdisplacement

dié6 :16-bitdisplacement

d24 :24-bitdisplacement

d32 :32-bitdisplacement

30 Notations

Chapter 2 Instruction description

abs8 :8-bitabsolute

abs16 :16-bitabsolute

abs24 :24-bitabsolute

abs32 :32-bitabsolute

) :Indirectaddressing

For details, refer to Chapter 1, Instruction description, 5. Addressing mode.
regs :Multipleregister definition

0x.... :hexadecimal (The numbers following 0x indicates hexadecimal.)
.bpn :Bit position (n indicates the bit positions 0-31.)
[n] :Bit position (n indicates the bit position.)

1sb :Bit position (Bit 0)

.msb :Bit position (Bit 31)

+ :Addition

- :Subtraction

* :Multiplication

/ :Division

Sqrt :Square root

% :Surplus

& :Logical product

:Logical sum

A :Exclusive logical sum
~ :Bitreverse
<<n ‘n-bit left shift
>>n ‘n-bit right shift
-> :Transfer
:Reflection of operation results
(sign_ext) :Sign extension
(zero_ext) :Zero extension
label :Address
VF :Overflowflag
CF :Carry flag
NF :Negative flag
ZF :Zero flag
mem8(xxx) :8-bit data within the memory addressed by xxx
mem16(xxx) :16-bit data within the memory addressed by xxx
mem32(Xxx) :32-bit data within the memory addressed by xxx
mem_cline(xxx) :Data cache line data within the memory addressed by xxx
CodeSize :Code size of assembler nmemonic

Notations 3 1

Chapter 2 Instruction description

The symbols used in the flag change tables are shown below.
("Flag" is used generically for the lower 4 bits (V, C, N and Z) in PSW.)

:With flag change
:With no flag change
:Always "0"
:Always"1"
:Undefined

:Defined by user

: The instruction with this mark is implemented in AM33-1.

:The instruction with this mark is implemented in AM33-2.

:The instruction with this mark is implemented in AM33-2A.

:The instruction with this mark is implemented in AM34-1.

60090

32 Notations

Chapter 2 Instruction description

MOV ...

MOV Reg1, Reg2

Operation Regl -> Reg2

5
or
KR
%
c s
c®
£

This instruction transfers the contents of Regl to Reg?2.

Assembler mnemonic Note VICI|IN|Z]| Size
mov Am, An n=m cannot be specified. R

N

mov Dm, Dn n=m cannot be specified. |- |- 1-

mov Am, Dn |- |- 1-

mov Dm, An I

mov Am, Rn N N

mov Rm, An el e e

mov Dm, Rn el e e

mov Rm, Dn [IO I

WININININ NN =

mov Rm, Rn [IO I

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV imm, Reg
Operation imm -> Reg
This instruction transfers imm to Reg.

Assembler mnemonic Note VICI|IN|Z]| Size
mov imm8, An imm8 is zero-extended. - -|-1-1] 2
mov imm16, An imm16 is zero-extended. N I 3
mov imm32, An - =-1=-1- 6
mov imm8, Dn imm8 is zero-extended. —-|-1- |- 2
mov imm16, Dn imm16 is zero-extended. — === 3
mov_imm32, Dn === 6
mov imm8, Rn imm8 is zero-extended. B I 4
mov imm24, Rn imm24 is zero-extended. N I N 6
mov imm32, Rn === 7

Flag change
VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV 33

Chapter 2 Instruction description

MOV MSP, An <Privileged instruction>

Operation MSP -> An

In the monitor level, this instruction transfers the contents of the monitor-level stack

pointer (MSP) to the address register (An).

Assembler mnemonic Note VIC|IN|Z| Size
mov MSP, An —_=1=71= 2
Flag change
VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.
‘ This instruction is valid only in the monitor level.
| When the instruction is used in the supervisor and user levels, a system exception,
priviledged instruction execution exception, occurs.
MOV Am, MSP <Privileged instruction>
Operation Am -> MSP
In the monitor level, this instruction transfers the contents of the address register (Am) to
the monitor-level stack pointer (MSP).
Assembler mnemonic Note VICIN|Z| Size
mov Am, MSP e el 2

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

‘ This instruction is valid only in the monitor level.
H When the instruction is used in the supervisor and user levels, a system exception,

priviledged instruction execution exception, occurs.

34 MOV

Chapter 2 Instruction description

MOV SSP, An <Privileged instruction>

Operation SSP -> An

In the monitor or supervisor level, this instruction transfers the contents of the supervisor-

level stack pointer (SSP) to the address register (An).

Assembler mnemonic Note VICI|N|Z| Size
mov SSP, An _=1=1-= 2
Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

‘ This instruction is valid only in the monitor or supervisor level.
| When the instruction is used in the user level, a system exception, priviledged instruction

execution exception, occurs.

MOV Am, SSP <Privileged instruction>

Operation Am -> SSP

In the monitor or supervisor level, this instruction transfers the contents of the address

register (Am) to the supervisor-level stack pointer (SSP).

Assembler mnemonic Note VICIN|Z| Size

mov Am, SSP e el 1
Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

‘ This instruction is valid only in the monitor or supervisor level.
H When the instruction is used in the user level, a system exception, priviledged instruction

execution exception, occurs.

MOV 35

Chapter 2 Instruction description

MOV USP, An <Privileged instruction>

Operation USP -> An

In the monitor or supervisor level, this instruction transfers the contents of the user-level

stack pointer (USP) to the address register (An).

Assembler mnemonic Note VICI|IN|Z| Size

mov USP, An - | =1=-1- 2

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

‘ This instruction is valid only in the monitor or supervisor level.
| When the instruction is used in the user level, a system exception, priviledged instruction

execution exception, occurs.

MOV Am, USP <Privileged instruction>

Operation Am ->USP

In the monitor or supervisor level, this instruction transfers the contents of the address

register (Am) to the user-level stack pointer (USP).

Assembler mnemonic Note VICIN|Z| Size

mov Am, USP e el 2

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

‘ This instruction is valid only in the monitor or supervisor level.
H When the instruction is used in the user level, a system exception, priviledged instruction

execution exception, occurs.

36 MOV

Chapter 2 Instruction description

MOV EPSW, Dn <Privileged instruction>

Operation EPSW -> Dn

In the monitor or supervisor level, this instruction transfers the contents of the processor-

status-word (EPSW) to the data register (Dn).

Assembler mnemonic Note VICI|N|Z| Size
mov EPSW, Dn _ - 1T=-1=
Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

‘ This instruction is valid only in the monitor or supervisor level.
| When the instruction is used in the user level, a system exception, priviledged instruction

execution exception, occurs.

MOV Dm, EPSW <Privileged instruction>

Operation Dm -> EPSW

In the monitor or supervisor level, this instruction transfers the contents of the data regis-

ter (Dm) to the processor-status-word (EPSW).

Assembler mnemonic Note VICIN|Z| Size
mov Dm, EPSW Y 2
Flag change

VEF: Bit 3 of Dm.
CF: Bit 2 of Dm.
NF: Bit 1 of Dm.
ZF: Bit 0 of Dm.

‘ This instruction is valid only in the monitor or supervisor level.
H When the instruction is used in the user level, a system exception, priviledged instruction

execution exception, occurs.

MOV 37

Chapter 2 Instruction description

MOV PSW, Dn <Privileged instruction>

Operation| pgw(15:0] -> Dn[15:0]
0x0000 -> Dn[31:16]

In the monitor or supervisor level, this instruction transfers the zero-extended 16-bit pro-

cessor-status-word (PSW) to the data register (Dn).

Assembler mnemonic Note VICI|IN|Z| Size

mov PSW, Dn - | =1=-1- 2

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

‘ This instruction is valid only in the monitor or supervisor level.
| When the instruction is used in the user level, a system exception, priviledged instruction

execution exception, occurs.

MOV Dm, PSW <Privileged instruction>

Operation Dm[15:0] -> EPSW

In the monitor or supervisor level, this instruction transfers the lower 16 bits of the data
register (Dm) to the processor-status-word (PSW). (The upper 16 bits are ignored.)

Assembler mnemonic Note VICIN|Z| Size

mov Dm, PSW YN IK 3K) 2

Flag change

VEF: Bit 3 of Dm.
CF: Bit 2 of Dm.
NF: Bit 1 of Dm.
ZF: Bit 0 of Dm.

‘ This instruction is valid only in the monitor or supervisor level.
H When the instruction is used in the user level, a system exception, priviledged instruction

execution exception, occurs.

38 MOV

Chapter 2 Instruction description

MOV MDR, Dn

Operation

MDR -> Dn

This instruction transfers the contents of the multiply/divide register (MDR) to the data

register (Dn).

Assembler mnemonic

Note

VICIN|Z| Size

mov MDR, Dn

Flag change

VE: This
CF: This
NF: This
ZF: This

is not changed.
is not changed.
is not changed.

is not changed.

MOV

Dm, MDR

Operation

Dm -> MDR

This instruction transfers the contents of the data register (Dm) to the multiply/divide

register (MDR).

Assembler mnemonic

Note

Size

mov Dm, MDR

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV

39

Chapter 2 Instruction description

MOV SP, Reg

Operation SP -> Reg

This instruction transfers the contents of the stack pointer (SP) to the register (Reg).

Assembler mnemonic Note VICI|N|Z| Size
mov SP, An — === 1
mov SP, Rn — === 3

Flag change

VEF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV Reg, SP

Operation Reg -> SP

This instruction transfers the contents of Reg to SP.

Assembler mnemonic Note VICIN|Z| Size
mov Am, SP === 2
mov Rm, SP S [[3

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV imm, SP

Operation imm -> SP

This instruction transfers imm to SP.

Assembler mnemonic Note V|C|N|Z| Size
mov imm8, SP imm8 is zero-extended. - |=1=-1-1 4
mov imm24, SP imm24 is zero-extended. - = 1-1- 6
mov imm32, SP — |-]=1-= 7

Flag change

VEF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

40 MOV

Chapter 2 Instruction description

MOV MDRQ, Rn

Operation MDRQ -> Rn

This instruction transfers the contents of the extended multiply register (MDRQ) to Rn.

Assembler mnemonic Note

Vv

C

N

V4

Size

mov MDRQ, Rn

0

0

A

A

Flag change

VF: Always 0.
CF: Always 0.
NF: 1 when MSB of the transfer result is 1, 0 in all other cases.

ZF: 1 when the transfer result is 0, 0 in all other cases.

MOV Rm, MDRQ

Operation Rm -> MDRQ

This instruction transfers the contents of Rm to MDRQ.

Assembler mnemonic Note

Size

mov Rm, MDRQ

Flag change

VEF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV imm, MDRQ

Operation imm -> MDRQ

This instruction transfers imm to MDRQ.

Assembler mnemonic Note

Size

mov imm8, MDRQ imm8 is zero-extended.

mov imm24, MDRQ imm24 is zero-extended.

mov imm32, MDRQ

Flag change

VEF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV 4]

Chapter 2 Instruction description

MOV

MCRH, Rn

Operation MCRH -> Rn
MCVF -> EPSW.V
This instruction transfers the contents of the upper 32 bits in the multiply-and-accumulate opera-
tion register (MCRH) to the Register (Rn). This transfers the contents of the multiply-and-accu-
mulate overflow flag (MCVF) to the overflow flag of the processor status word (EPSW.V).
Assembler mnemonic Note VIC|IN|Z| Size
mov MCRH, Rn AlO|?]|7? 3

Flag change

VF: 1 when MCVF is 1, 0 in all other cases.
CF: Always 0.

NF: Undefined.

ZF: Undefined.

MOV

Rm, MCRH

Operation Rm -> MCRH
EPSW.V -> MCVF
This instruction transfers the contents of the Register (Rm) tothe upper 32 bits in the multiply-
and-accumulate operation register (MCRH). This transfers the contents of the overflow flag of
the processor status word (EPSW.V) to the multiply-and-accumulate overflow flag (MCVF).
Assembler mnemonic Note VICIN|Z/| Size
mov Rm, MCRH i el e 3

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV imm, MCRH

Operation imm -> MCRH
EPSW.V -> MCVF
This instruction transfers imm to the upper 32 bits in the multiply-and-accumulate operation reg-
ister (MCRH). This transfers the contents of the overflow flag of the processor status word
(EPSW.V) to the multiply-and-accumulate overflow flag (MCVF).

Assembler mnemonic Note VICI|INI| Z| Size
mov imm8, MCRH imm8 is zero-extended. -|=-|-1-1 4
mov imm24, MCRH imm24 is zero-extended. - |=-1-1|- 6
mov imm32, MCRH - |- 1- |- 7

Flag change

VF: This is not changed.

CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

42 MOV

Chapter 2 Instruction description

MOV

MCRL, Rn

Operation MCRL -> Rn
MCVF -> EPSW.V
This instruction transfers the contents of the lower 32 bits in the multiply-and-accumulate opera-
tion register (MCRL) to the Register (Rn). This transfers the contents of the multiply-and-accu-
mulate overflow flag (MCVF) to the overflow flag of the processor status word (EPSW.V).
Assembler mnemonic Note VICI|N|Z| Size
mov MCRL, Rn A0 |2 |? 3

Flag change

VF: 1 when MCVF is 1, 0 in all other cases.
CF: Always 0.

NF: Undefined.

ZF: Undefined.

MOV

Rm, MCRL

Operation Rm -> MCRL
EPSW.V -> MCVF
This instruction transfers the contents of the Register (Rm) to the lower 32 bits in the multiply-
and-accumulate operation register (MCRL). This transfers the contents of the overflow flag of the
processor status word (EPSW.V) to the multiply-and-accumulate overflow flag (MCVF).
Assembler mnemonic Note VICIN|Z| Size
mov Rm, MCRL e e 3

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV imm, MCRL

Operation imm -> MCRL
EPSW.V -> MCVF
This instruction transfers imm to the lower 32 bits in the multiply-and-accumulate operation reg-
ister (MCRL). This transfers the contents of the overflow flag of the processor status word
(EPSW.V) to the multiply-and-accumulate overflow flag (MCVF).

Assembler mnemonic Note VIC|NI| Z| Size
mov imm8, MCRL imm8 is zero-extended. -|=-|-1-1 4
mov imm24, MCRL imm24 is zero-extended. - |=-1-1|- 6
mov imm32, MCRL - |- 1- |- 7

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV 43

Chapter 2 Instruction description

MOV

MCVF, Rn

Operation

MCVF -> Rn[0]
0x00000000 -> Rn[31:1]

This instruction transfers the contents of the multiply-and-accumulate overflow flag (MCVF) to

the bit 0 of the register (Rn).

Assembler mnemonic Note

Size

mov MCVF, Rn

3

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV Rm, MDRQ

Operation

Rm[0] -> MCVF

This instruction transfers the contents of bit 0 of Rm to MCVF.

Assembler mnemonic Note

Size

mov Rm, MCVF

Flag change

VEF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV imm, MCVF

Operation

imm[0] -> MCVF

This instruction transfers bit 0 of imm to MCVF.

Assembler mnemonic Note

Size

mov imm8, MCVF

mov imm24, MCVF

mov imm32, MCVF

Flag change

VEF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

44 MOV

Chapter 2 Instruction description

MOV PC, An

Operation PC -> An

This instruction transfers the program counter (PC) of the current instruction to the register

(An).

N | Z | Size

Assembler mnemonic Note V|C

- =1 2

mov PC, An

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOV

45

Chapter 2 Instruction description

MOV Mem, Reg

Operation| \oy (Regl), Reg2
mem32(Regl) -> Reg2

MOV (disp, Regl), Reg2
mem32(Regl+disp) -> Reg2

MOV (Regl, Reg2), Reg3
mem32(Regl+Reg2) -> Reg3

MOV (abs), Regl
mem32(abs) -> Regl

MOV (disp, SP), Regl
mem32(SP+disp) -> Regl

This instruction performs the word-data transfer of the content of Mem to Reg.

MOV (disp+Regl), SP
mem32(Regl) -> SP

This instruction performs the word-data transfer of the content of Mem to the stack

pointer (SP).

Assembler mnemonic

Note

Size

mov (Am),Dn

-

mov (Am),An

mov (Rm),Rn

mov (d8,Am),Dn

d8 is sign-extended.

mov (d16,Am),Dn

d16 is sign-extended.

mov (d32,Am),Dn

mov (d8,Am),An

d8 is sign-extended.

mov (d16,Am),An

d16 is sign-extended.

mov (d32,Am),An

mov (d8,Rm),Rn

d8 is sign-extended.

mov (d24,Rm),Rn

d24 is sign-extended.

mov (d32,Rm),Rn

mov (Di,Am),Dn

mov (Di,Am),An

mov (Ri,Rm),Rn

mov (abs16),Dn

abs16 is zero-extended.

mov (abs32),Dn

mov (abs16),An

abs16 is zero-extended.

mov (abs32),An

mov (abs8),Rn

abs8 is zero-extended.

mov (abs24),Rn

abs24 is zero-extended.

mov (abs32),Rn

mov (d8,SP),Dn

d8 is zero-extended.

mov (d16,SP),Dn

d16 is zero-extended.

mov (d32,SP),Dn

mov (d8,SP),An

d8 is zero-extended.

mov (d16,SP),An

d16 is zero-extended.

AINOBRNINID|ROD|IR|IOIWO[RAINININO|RM ORI WO| | WWN

46

MOV

Chapter 2 Instruction description

Assembler mnemonic

Note

VICIN| Z]| Size

mov (d32,SP),An

mov (SP),Rn

mov (d8,SP),Rn

d8 is zero-extended.

mov (d24,SP),Rn

d24 is zero-extended.

mov (d32,SP),Rn

mov (d8,Am),SP

d8 is sign-extended.

|

|

|

|
WIN|O|h~|W| O

Flag change

VEF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

When the Mem address is not a multiple of 4, a system exception (address misalignment

exception) occurs.

MOV 47

Chapter 2 Instruction description

MOV Reg, Mem

Operation| \oy Regl, (Reg2)

Regl -> mem32(Reg2)
MOV Regl, (disp, Reg2)

Regl -> mem32(Reg2+disp)
MOV Regl, (Reg2, Reg3)

Regl -> mem32(Reg2+Reg3)
MOV Regl, (abs)

Regl -> mem32(abs)
MOV Regl, (disp, SP)

Regl -> mem32(SP+disp)

This instruction performs the word-data transfer of the content of Reg to Mem.

MOV SP, (disp+Regl)
SP -> mem32(Regl+disp)

This instruction performs the word-data transfer of the content of the stack pointer (SP) to

Mem.

Assembler mnemonic Note VIC|IN|Z]| Size
mov Dm,(An) [I R 1
mov Am,(An) N I R
mov Rm,(Rn) N
mov Dm,(d8,An) d8 is sign-extended. el e
mov Dm,(d16,An) d16 is sign-extended. o Bl il
mov Dm,(d32,An) Bl B
mov Am,(d8,An) d8 is sign-extended. sl Bl Bl
mov Am,(d16,An) d16 is sign-extended. ol el el B
mov Am,(d32,An) el Bl
mov Rm,(d8,Rn) d8 is sign-extended. el el
mov Rm,(d24,Rn) d24 is sign-extended. Bl Bl i

mov Rm,(d32,Rn) N I R

mov Dm,(Di,An) I

mov Am,(Di,An) [I R

mov Rm,(Ri,Rn) N R R

AINOBRNINID|ROD|IR|IOIWO[RAINININO|RM ORI WO| | WWN

mov Dm,(abs16) abs16 is zero-extended. o e e
mov Dm,(abs32) N I B
mov Am,(abs16) abs16 is zero-extended. - - -1~
mov Am,(abs32) N R R
mov Rm,(abs8) abs8 is zero-extended. - =] ==
mov Rm,(abs24) abs24 is zero-extended. - ===
mov Rm,(abs32) N I R
mov Dm,(d8,SP) d8 is zero-extended. N I R
mov Dm,(d16,SP) d16 is zero-extended. I
mov Dm,(d32,SP) [IR U
mov Am,(d8,SP) d8 is zero-extended. S I I
mov Am,(d16,SP) d16 is zero-extended. I I A

48 MOV

Chapter 2 Instruction description

Assembler mnemonic Note V|C|N|Z]| Size
mov Am,(d32,SP) [=T=1=1] s
mov Rm,(SP) - =-1-1- 3
mov Rm,(d8,SP) d8 is zero-extended. -|1-1-1-1 4
mov Rm,(d24,SP) d24 is zero-extended. -|=-|-|-| 6
mov Rm,(d32,SP) e 7
mov SP,(d8,An) d8 is sign-extended. -|1-1-1-1 3

Flag change
VEF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.
G When the Mem address is not a multiple of 4, a system exception (address misalignment
= exception) occurs.
MOV 49

Chapter 2 Instruction description

MOV (Rm+,imm), Rn

Operation mem32(Rm) -> Rn

Rm + imm -> Rm

This instruction loads the data specified by Rm from Mem, and stores them in Rn.

Moreover, it adds Rm to imm, and stores the result in Rm.

Assembler mnemonic Note V|C|N|Z| Size
mov (Rm+, imm8), Rn imm8 is sign-extended. - |=1-1-1 4
mov (Rm+,imm24), Rn imm24 is sign-extended. —|= 1= |- 6
mov (Rm+, imm32), Rn - |=-1-1|- 7

Flag change

VEF: This is not changed.

CF: This is not changed.

NF: This is not changed.

ZF: This is not changed.

G When the Mem address is not a multiple of 4, a system exception (address misalignment
= exception) occurs.
G When Rm=Rn is specified, the operations are not guaranteed.
MOV (Rm+), Rn
Operation mem32(Rm) -> Rn
Rm + 4 -> Rm
This instruction loads the data specified by Rm from Mem, and stores them in Rn.
Moreover, it adds Rm to 4, and stores the result in Rm.
Assembler mnemonic Note VICIN|Z| Size
mov (Rm+), Rn - =1-1- 3
Flag change

VF: This is not changed.

CF: This is not changed.

NF: This is not changed.

ZF: This is not changed.

‘ When the Mem address is not a multiple of 4, a system exception (address misalignment
. exception) occurs.

G When Rm=Rn is specified, the operations are not guaranteed.

50 MOV

Chapter 2 Instruction description

MOV Rm, (Rn+,imm)

Operation Rm -> mem32(Rn)
Rn + imm -> Rn
This instruction stores the contents of Rm in the memory specified by Rn.
Moreover, it adds Rn to imm, and stores the result in Rn.

Assembler mnemonic Note V|C|N| Z]| Size
mov Rm, (Rn+, imm8) imm8 is sign-extended. - == 1- 4
mov Rm, (Rn+, imm24) imm24 is sign-extended. —|= 1= |- 6
mov Rm, (Rn+, imm32) - |=-1-1|- 7

Flag change

VEF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

When the Mem address is not a multiple of 4, a system exception (address misalignment

exception) occurs.

MOV Rm, (Rn+)

Operation Rm -> mem32(Rn)
Rn + 4 ->Rn
This instruction stores the contents of Rn in the memory specified by Rn.
Moreover, it adds Rn to 4, and stores the result in Rn.
Assembler mnemonic Note VICIN|Z| Size
mov Rm, (Rn+) - =1-1- 3

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

When the Mem address is not a multiple of 4, a system exception (address misalignment

exception) occurs.

MOV 51

Chapter 2 Instruction description

MO ' U Unsigned word transfer

MOVU imm, Reg

Operation imm -> Reg
This instruction transfers imm to Reg.

Assembler mnemonic Note Size
movu imm8, Rn imm8 is zero-extended. 4
movu imm24, Rn imm24 is zero-extended. 6
movu imm32, Rn 7

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

52 MOVU

Chapter 2 Instruction description

MO ’ HU Unsigned half-word transfer

MOVHU Mem, Reg

Operation| MOVHU (Regl), Reg2
meml6(Regl) -> Reg2[15:0]
0x0000 -> Reg2[31:16]

MOVHU (disp, Regl), Reg2
meml16(Regl+disp) -> Reg2[15:0]
0x0000 -> Reg2[31:16]

MOVHU (Regl, Reg2), Reg3
meml16(Regl+Reg2) -> Reg3[15:0]
0x0000 -> Reg3[31:16]

MOVHU (abs), Regl
mem16(abs) -> Regl[15:0]
0x0000 -> Regl[31:16]

MOVHU (disp, SP), Regl
mem16(SP+disp) -> Regl[15:0]
0x0000 -> Regl[31:16

]

This instruction performs the half-word transfer of the content of Mem to Reg. (16 bits -> 32
bits: Zero-extension)

Assembler mnemonic Note VICIN|Z| Size

N

movhu (Am),Dn - ===

movhu (Rm),Rn N I R

movhu (d8,Am),Dn d8 is sign-extended. - ==~
movhu (d16,Am),Dn d16 is sign-extended. - =-1-1-
movhu (d32,Am),Dn N N S
movhu (d8,Rm),Rn d8 is sign-extended. - ===
movhu (d24,Rm),Rn d24 is sign-extended. - ===

movhu (d32,Rm),Rn N I R
movhu (Di,Am),Dn | - =1 =
movhu (Ri,Rm),Rn — | - ==

movhu (abs16),Dn abs16 is zero-extended. - =1-1-
movhu (abs32),Dn - =1-1-
movhu (abs8),Rn abs8 is zero-extended. ol Rl el B
movhu (abs24),Rn abs24 is zero-extended. e e
movhu (abs32),Rn o e
movhu (d8,SP),Dn d8 is zero-extended. i e Bl
movhu (d16,SP),Dn d16 is zero-extended. el B

movhu (d32,SP),Dn - - ==

movhu (SP),Rn - ===
movhu (d8,SP),Rn d8 is zero-extended. N (S (N
movhu (d24,SP),Rn d24 is zero-extended. - =-1-1-
movhu (d32,SP),Rn e

N (PO [WIN[([OPAR|O|WO|BA(NMN N |IO| DWW

MOVHU 53

Chapter 2 Instruction description

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

G When the Mem address is not a multiple of 2, a system exception (address misalignment
J exception) occurs.

54 MOVHU

Chapter 2 Instruction description

MOVHU Reg, Mem

Operation

MOVHU Regl (Reg2)

Regl[15:0] ->mem16(Reg2)
MOVHU Regl, (disp, Reg2)

Regl[15:0] -> mem16(Reg2+disp)
MOVHU Regl, (Reg2, Reg3)

Regl[15:0] -> mem16(Reg2+Reg3)
MOVHU Regl, (abs)

Regl[15:0] -> mem16(abs)
MOVHU Regl, (disp, SP)

Regl[15:0] -> mem16(SP+disp)

This instruction performs the half-word transfer of the content of Reg to Mem. The upper 16
bits of Reg are ignored.

Assembler mnemonic Note VIC|N|Z| Size
movhu Dm,(An) N I I 2
movhu Rm,(Rn) B [ey 3
movhu Dm,(d8,An) d8 is sign-extended. --1-]1-] 3
movhu Dm,(d16,An) d16 is sign-extended. - =-|-|-] 4
movhu Dm,(d32,An) e 6
movhu Rm,(d8,Rn) d8 is sign-extended. - =] -1 - 4
movhu Rm,(d24,Rn) d24 is sign-extended. - =1 -1 - 6
movhu Rm,(d32,Rn) R 7
movhu Dm,(Di,An) e 2
movhu Rm,(Ri,Rn) N I R 4
movhu Dm,(abs16) abs16 is zero-extended. - =1 -1- 3
movhu Dm,(abs32) - === 6
movhu Rm,(abs8) abs8 is zero-extended. - =] 4
movhu Rm,(abs24) abs24 is zero-extended. o et e e
movhu Rm,(abs32) - - =1 - 7
movhu Dm,(d8,SP) d8 is zero-extended. o el el 3
movhu Dm,(d16,SP) d16 is zero-extended. - =|=--| 4
movhu Dm,(d32,SP) - = =1 - 6
movhu Rm,(SP) - === 3
movhu Rm,(d8,SP) d8 is zero-extended. - === 4
movhu Rm,(d24,SP) d24 is zero-extended. e 6
movhu Rm,(d32,SP) - - == 7

MOVHU 55

Chapter 2 Instruction description

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

G When the Mem address is not a multiple of 2, a system exception (address misalignment
J exception) occurs.

56 MOVHU

Chapter 2 Instruction description

MOVHU (Rm+, imm), Rn

Operation | 161 16(Rm) -> Rn[15:0]
0x0000 -> Rn[31:16]
Rm + imm -> Rm
This instruction loads the 16-bit data from Mem specified by Rm, and transfers them in
Rn.
Moreover, it adds Rm to imm, and stores the result in Rm.

Assembler mnemonic Note V|C|N| Z| Size
movhu (Rm+, imm8), Rn imm8 is sign-extended. —|=|=-1-1 4
movhu (Rm+, imm24), Rn imm24 is sign-extended. e 6
movhu (Rm+,imm32), Rn el 7

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

(

When the Mem address is not a multiple of 2, a system exception (address misalignment

exception) occurs.

MOVHU (Rm+), Rn

Operation| o0 16(Rm) -> Rn[15:0]
0x0000 -> Rn[31:16]
Rm + 2 -> Rm
This instruction loads the data specified by Rm from Mem, and stores them in Rn.
Moreover, it adds Rm to 4, and stores the result in Rm.
Assembler mnemonic Note VICI|N|Z| Size

movhu (Rm+), Rn

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

When the Mem address is not a multiple of 2, a system exception (address misalignment

exception) occurs.

MOVHU 57

Chapter 2 Instruction description

MOVHU Rm, (Rn+, imm)

Operation Rm[15:0] -> mem16(Rn)

Rn + imm -> Rn

This instruction stores the lower 16 bits of the Rm in the Mem specified by Rn.

Moreover, it adds Rn to imm, and stores the result in Rn.

VIC|N| Z| Size

Assembler mnemonic Note
movhu Rm(Rn+, imm8) imm8 is sign-extended.
movhu Rm(Rn+, imm24) imm24 is sign-extended.
movhu Rm(Rn+, imm32)

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

G When the Mem address is not a multiple of 2, a system exception (address misalignment
J exception) occurs.

MOVHU (Rm+), Rn

Operation| Ry[15:0] -> mem16(Rm)
Rn+ 2 ->Rn
This instruction stores the lower 16 bits of Rn in the Mem specified by Rn.

Moreover, it adds Rm to 2, and stores the result in Rn.

Note VIC|N|Z| Size

Assembler mnemonic
movhu Rm, (Rn+)

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

G When the Mem address is not a multiple of 2, a system exception (address misalignment

exception) occurs.

58 MOVHU

MO ' B U Unsigned byte transfer

Chapter 2 Instruction description

MOVBU Mem, Reg

Operation| MOVBU (Regl), Reg2
mem8(Regl) -> Reg2[7:0]
0x000000 -> Reg2[31:8]

MOVBU (disp, Regl), Reg2
mem8(Regl+disp) -> Reg2[7:0]
0x000000 -> Reg2[31:8]

MOVBU (Regl, Reg2), Reg3
mem8(Regl+Reg2) -> Reg3[7:0]
0x000000 -> Reg3[31:8]

MOVBU (abs), Regl
mem8(abs) -> Regl[7:0]
0x000000 -> Regl1[31:8]

MOVBU (disp, SP), Regl
mem8(SP+disp) -> Regl[7:0]
0x000000 -> Regl[31:8]

bits: Zero-extension)

This instruction performs the byte-data transfer of the content of Mem to Reg. (8 bits -> 32

Assembler mnemonic Note VIC|N|Z| Size
movbu (Am),Dn - === 2
movbu (Rm),Rn - === 3
movbu (d8,Am),Dn d8 is sign-extended. - ==~ 3
movbu (d16,Am),Dn d16 is sign-extended. - === 4
movbu (d32,Am),Dn - -1 -1- 6
movbu (d8,Rm),Rn d8 is sign-extended. 1] 4
movbu (d24,Rm),Rn d24 is sign-extended. S I R 6
movbu (d32,Rm),Rn | == 7
movbu (Di,Am),Dn | - = 2
movbu (Ri,Rm),Rn | = == 4
movbu (abs16),Dn abs16 is zero-extended. -l =-1=1-] 3
movbu (abs32),Dn -l =l =1=1] 6
movbu (abs8),Rn abs8 is zero-extended. - =1-- 4
movbu (abs24),Rn abs24 is zero-extended. - =~ 6
movbu (abs32),Rn S (R [7
movbu (d8,SP),Dn d8 is zero-extended. - === 3
movbu (d16,SP),Dn d16 is zero-extended. - === 4
movbu (d32,SP),Dn | = == 6
movbu (SP),Rn B I R 3
movbu (d8,SP),Rn d8 is zero-extended. S R A 4
movbu (d24,SP),Rn d24 is zero-extended. -l =l=1=1] 6
movbu (d32.SP).Rn S (R R 7

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOVBU 59

Chapter 2 Instruction description

MOVBU Reg, Mem

Operation| MOVBU Regl (Reg2)

Regl[7:0] ->mem8(Reg2)
MOVBU Regl, (disp, Reg2)

Regl[7:0] -> mem8(Reg2+disp)
MOVBU Regl, (Reg2, Reg3)

Regl[7:0] -> mem8(Reg2+Reg3)
MOVBU Regl, (abs)

Regl[7:0] -> mem8(abs)
MOVBU Regl, (disp, SP)

Regl[7:0] -> mem8(SP+disp)

bits: The upper bits are rounded down.)

This instruction performs the byte-data transfer of the content of Reg to Mem. (32 bits -> 8§

Assembler mnemonic Note

Size

movbu Dm,(An)

N

movbu Rm,(Rn)

movbu Dm,(d8,An) d8 is sign-extended.
movbu Dm,(d16,An) d16 is sign-extended.
movbu Dm,(d32,An)

movbu Rm,(d8,Rn) d8 is sign-extended.
movbu Rm,(d24,Rn) d24 is sign-extended.

movbu Rm,(d32,Rn)

movbu Dm,(Di,An)

movbu Rm,(Ri,Rn)

movbu Dm,(abs16) abs16 is zero-extended.
movbu Dm,(abs32)

movbu Rm,(abs8) abs8 is zero-extended.
movbu Rm,(abs24) abs24 is zero-extended.
movbu Rm,(abs32)

movbu Dm,(d8,SP) d8 is zero-extended.
movbu Dm,(d16,SP) d16 is zero-extended.

movbu Dm,(d32,SP)

movbu Rm,(SP)

movbu Rm,(d8,SP) d8 is zero-extended.

movbu Rm,(d24,SP) d24 is zero-extended.

movbu Rm,(d32,SP)

N|O|(dhlWO(M[W|IN[(O|RA|O[W|BA[MN|O|M|IO| DWW

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

60 MOVBU

Chapter 2 Instruction description

MO ' MTransfer between multiple registers and memory

MOVM (SP), regs (SP relative)
Operation When all registers are specified,
regs=[ALL]
mem32(SP+92) -> E2, mem32(SP+88) -> E3, mem32(SP+84) -> E4
mem32(SP+80) -> E5, mem32(SP+76) -> E6, mem32(SP+72) -> E7
mem32(SP+68) -> E0, mem32(SP+64) -> E1, mem32(SP+60) -> MDRQ
mem32(SP+56) -> MCRH, mem32(SP+52) -> MCRL, mem32(SP+48) -> MCVF
mem32(SP+44) -> D2, mem32(SP+40) -> D3, mem32(SP+36) -> A2
mem32(SP+32) -> A3, mem32(SP+28) -> DO, mem32(SP+24) -> D1
mem32(SP+20) -> A0, mem32(SP+16) -> Al, mem32(SP+12) -> MDR
mem32(SP+8) -> LIR, mem32(SP+4) -> LAR, SP+96 -> SP
This instruction restores the multiple registers saved in the memory indicated by SP.
The multiple registers to transfer data are specified by regs, and D2, D3, A2, A3 and other
reisters are specified as followings.
OTHER : D0,D1,A0,A1,MDR,LIR,LAR
EXREGO : E2,E3
EXREG]! : E4,E5,E6,E7
EXOTHER : E0,E1,MDRQ,MCRH,MCRL,MCVF
When all of the above-mentioned registers are specified, ALL is used.
ALL : D2,D3,A2,A3,0THER,EXREG0,EXREG1,EXOTHER
Assembler mnemonic Note V|IC|N| Z| Size
movm (SP), [reg1, reg2,,,regn] N 2
Flag change

VF: This is not changed.

CF: This is not changed.

NF: This is not changed.

ZF: This is not changed.

MOVM 61

Chapter 2 Instruction description

This instruction can be executed at any level, and refers to SP at the present. That is, it refers to
G USP when the present level is the user level, SSP when it is the supervisor one, and MSP when it is
the monitor one.
Bit allocation of the multiple registers (regs) is shown below. When you specify all of these, use
ALL.
7 6 5 4 3 2 1 0

D2 D3 A2 A3 OTHER EXREGO EXREG1 EXOTHER

Data is transferred from the higher addresses in the order of E2, E3, E4, ES, E6, E7, EO,
E1,MDRQ, MCRH, MCRL, MCVF, D2, D3, A2, A3, DO, D1, A0, A1, MDR, LIR and LAR.

Note that when “OTHER” is specified, a dummy area (4 bytes) is allocated (transfer operation is
not actually performed) at the end in order to simplify calculation of the transfer area (4 bytes x 8).
When “OTHER?” is not specified, this dummy area is not allocated.

When reg=0 is specified (when “movm (SP),[]” is executed), nothing is transferred.

When the Mem address indicated by the stack pointer (SP) is not a multiple of 4, system exception
(Address misalignment exception) occurs.

The memory status when all registers are specified is shown below.

Low address Restore Order Offset from SP
SP before execution -> | Dummy area) 0
LAR (23) +4
LIR (22) +8
MDR (21) +12
A1 (20) +16
A0 (19) +20
D1 (18) +24
DO 17) +28
A3 (16) +32
A2 (15) +36
D3 (14) +40
D2 (13) +44
MCVF (12) +48
MCRL (11) +52
MCRH (19) +56
MDRQ 9) +60
E1 (8) +64
EO (7) +68
E7 (6) +72
E6 (5) +76
E5 (4) +80
E4 (3) +84
E3 (2) +88
E2 (1) +92
SP after execution -> +96
High address

62 MOVM

Chapter 2 Instruction description

MOVM regs, (SP) (SP relative)

Operation When all registers are specified,

regs=[ALL]

E2 -> mem32(SP-4), E3 -> mem32(SP-8), E4 -> mem32(SP-12),

ES -> mem32(SP-16), E6 -> mem32(SP-20), E7 -> mem32(SP-24),

EO -> mem32(SP-28), E1-> mem32(SP-32), MDRQ -> mem32(SP-36),
MCRH -> mem32(SP-40), MCRL-> mem32(SP-44),MCVF -> mem32(SP-48),
D2 -> mem32(SP-52), D3 -> mem32(SP-56), A2 -> mem32(SP-60),

A3 -> mem32(SP-64),D0 -> mem32(SP-68), D1 -> mem32(SP-72),

A0 -> mem32(SP-76),A1 -> mem32(SP-80),MDR -> mem32(SP-84),

LIR-> mem32(SP-88),LAR -> mem32(SP-92), SP-96 -> SP

This instruction restores the multiple registers saved in the memory indicated by SP.
The multiple registers to transfer data are specified by regs, and D2, D3, A2, A3 and other
reisters are specified as followings.

OTHER : D0,D1,A0,A1,MDR,LIR,LAR

EXREGO : E2,E3

EXREG]! : E4,E5,E6,E7

EXOTHER : E0,E1,MDRQ,MCRH,MCRL ,MCVF

When all of the above-mentioned registers are specified, ALL is used.
ALL : D2,D3,A2,A3,0THER,EXREG0,EXREG|,EXOTHER

Assembler mnemonic Note VIC|N| Z| Size

movm [reg1, reg2,,,regn], (SP) I D 2

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOVM 63

Chapter 2 Instruction description

64

This instruction can be executed at any level, and refers to SP at the present. That is, it refers to
USP when the present level is the user level, SSP when it is the supervisor one, and MSP when it is
the monitor one.
Bit allocation of the multiple registers (regs) is shown below. When you specify all of these, use
ALL.
7 6 5 4 3 2 1 0
D2 D3 A2 A3 OTHER EXREGO EXREGI EXOTHER

Data is transferred from the higher addresses in the order of E2, E3, E4, ES, E6, E7, EO,
E1,MDRQ, MCRH, MCRL, MCVF, D2, D3, A2, A3, DO, D1, A0, A1, MDR, LIR and LAR.

Note that when “OTHER” is specified, a dummy area (4 bytes) is allocated (transfer operation is
not actually performed) at the end in order to simplify calculation of the transfer area (4 bytes x 8).
When “OTHER?” is not specified, this dummy area is not allocated.

When reg=0 is specified (when “movm ,[], (SP)” is executed), nothing is transferred.

When the Mem address indicated by the stack pointer (SP) is not a multiple of 4, system exception
(Address misalignment exception) occurs.

The memory status when all registers are specified is shown below.

Low address Restore Order Offset from SP
SP after execution -> Dummy area (-) -96
LAR (23) -94
LIR (22) -88
MDR (21) -84
Al (20) -80
A0 (19) -76
D1 (18) 72
DO (17) -68
A3 (16) -64
A2 (15) -60
D3 (14) -56
D2 (13) -52
MCVF (12) -48
MCRL (11) -44
MCRH (19) -40
MDRQ 9) -36
E1 (8) -32
EO (7) -28
E7 (6) -24
E6 (5) -20
E5 4) -16
E4 (3) -12
E3 (2) -8
E2 (1) 4
SP before execution -> -0
High address

MOVM

Chapter 2 Instruction description

MOVM (USP), regs (USP relative<Privileged instruction>)

Operation When all registers are specified,

regs=[ALL]

mem32(USP+92) -> E2, mem32(USP+88) -> E3, mem32(USP+84) -> E4
mem32(USP+80) -> E5, mem32(USP+76) -> E6, mem32(USP+72) -> E7
mem32(USP+68) -> E0, mem32(USP+64) -> E1, mem32(USP+60) -> MDRQ
mem32(USP+56) -> MCRH, mem32(USP+52) -> MCRL, mem32(USP+48) -> MCVF
mem32(USP+44) -> D2, mem32(USP+40) -> D3, mem32(USP+36) -> A2
mem32(USP+32) -> A3, mem32(USP+28) -> DO, mem32(USP+24) -> D1
mem32(USP+20) -> A0, mem32(USP+16) -> A1, mem32(USP+12) -> MDR
mem32(USP+8) -> LIR, mem32(USP+4) -> LAR, USP+96 -> USP

This instruction restores the multiple registers saved in the memory indicated by USP.
The multiple registers to transfer data are specified by regs, and D2, D3, A2, A3 and other
reisters are specified as followings.

OTHER : D0,D1,A0,A1,MDR,LIR,LAR

EXREGO : E2,E3

EXREGI : E4,E5,E6,E7

EXOTHER : E0,E1,MDRQ,MCRH,MCRL,MCVF

When all of the above-mentioned registers are specified, ALL is used.
ALL : D2,D3,A2,A3,0THER,EXREGO0,EXREG1,EXOTHER

Assembler mnemonic Note VICIN| Z| Size

movm (USP),[reg1, reg2,,,regn] —l=1= = 3

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MOVM 65

Chapter 2 Instruction description

This instruction can be executed at the monitor and supervisor levels, and refers to USP in any
G level. When an instruction is to be carried out in the user level, a system exception (priviledged
instruction execution exception) occurs.
Bit allocation of the multiple registers (regs) is shown below. When you specify all of these, use
ALL.
7 6 5 4 3 2 1 0

D2 D3 A2 A3 OTHER EXREGO EXREG1 EXOTHER

Data is transferred from the higher addresses in the order of E2, E3, E4, ES, E6, E7, EO,
E1,MDRQ, MCRH, MCRL, MCVF, D2, D3, A2, A3, DO, D1, A0, A1, MDR, LIR and LAR.

Note that when “OTHER” is specified, a dummy area (4 bytes) is allocated (transfer operation is
not actually performed) at the end in order to simplify calculation of the transfer area (4 bytes x 8).
When “OTHER?” is not specified, this dummy area is not allocated.

When reg=0 is specified (when “movm (USP),[]” is executed), nothing is transferred.

When the Mem address indicated by the stack pointer (USP) is not a multiple of 4, system excep-
tion (Address misalignment exception) occurs.

Although MOVM using a stack pointer (SP) is a 2-byte instruction, this instruction is a 3-byte one.

The memory status when all registers are specified is shown below.

Low address | Restore Order Offset from USP
USP before execution -> | Dummy area) 0
LAR (23) +4
LIR (22) +8
MDR (21) +12
A1 (20) +16
A0 (19) +20
D1 (18) +24
DO (17) +28
A3 (16) +32
A2 (15) +36
D3 (14) +40
D2 (13) +44
MCVF (12) +48
MCRL (11) +52
MCRH (19) +56
MDRQ 9) +60
E1 (8) +64
EO 7) +68
E7 (6) 72
E6 (5) +76
E5 (4) +80
E4 (3) +84
E3 (2) +88
E2 (1) +92
USP after execution -> +96
High address

66 MOVM

Chapter 2 Instruction description

MOVM

regs,(USP)(USP relative<Privileged instruction>)

Operation

When all registers are specified,

regs=[ALL]

E2 -> mem32(USP-4), E3 -> mem32(USP-8), E4 -> mem32(USP-12),

ES -> mem32(USP-16), E6 -> mem32(USP-20), E7 -> mem32(USP-24),

EO -> mem32(USP-28), E1-> mem32(USP-32), MDRQ -> mem32(USP-36),
MCRH -> mem32(USP-40), MCRL-> mem32(USP-44), MCVF -> mem32(USP-48),
D2 -> mem32(USP-52), D3 -> mem32(USP-56), A2 -> mem32(USP-60),

A3 -> mem32(USP-64),D0 -> mem32(USP-68), D1 -> mem32(USP-72),

A0 -> mem32(USP-76),A1 -> mem32(USP-80),MDR -> mem32(USP-84),

LIR-> mem32(USP-88),LAR -> mem32(USP-92), USP-96 -> USP

This instruction saves the multiple registers in the memory indicated by USP.

The multiple registers to transfer data are specified by regs, and D2, D3, A2, A3 and other
reisters are specified as followings.

OTHER : D0,D1,A0,A1,MDR,LIR,LAR

EXREGO : E2,E3

EXREG]! : E4,E5,E6,E7

EXOTHER : E0,E1,MDRQ,MCRH,MCRL,MCVF

When all of the above-mentioned registers are specified, ALL is used.
ALL : D2,D3,A2,A3,0THER,EXREGO,EXREG1,EXOTHER

Assembler mnemonic Note VIC|N|Z

Size

movm [reg1, reg2,,,regn], (USP) I D

Flag change

VF: This

is not changed.

CF: This is not changed.

NF: This

is not changed.

ZF: This is not changed.

MOVM

67

Chapter 2 Instruction description

This instruction can be executed at the monitor and supervisor levels, and refers to USP in any
G level. When an instruction is to be carried out in the user level, a system exception (priviledged
instruction execution exception) occurs.
Bit allocation of the multiple registers (regs) is shown below. When you specify all of these, use
ALL.
7 6 5 4 3 2 1 0

D2 D3 A2 A3 OTHER EXREGO EXREG1 EXOTHER

Data is transferred from the higher addresses in the order of E2, E3, E4, ES, E6, E7, EO,
E1,MDRQ, MCRH, MCRL, MCVF, D2, D3, A2, A3, DO, D1, A0, A1, MDR, LIR and LAR.

Note that when “OTHER” is specified, a dummy area (4 bytes) is allocated (transfer operation is
not actually performed) at the end in order to simplify calculation of the transfer area (4 bytes x 8).
When “OTHER?” is not specified, this dummy area is not allocated.

When reg=0 is specified (when “movm [], (USP)” is executed), nothing is transferred.

When the Mem address indicated by the stack pointer (USP) is not a multiple of 4, system excep-
tion (Address misalignment exception) occurs.

Although MOVM using a stack pointer (SP) is a 2-byte instruction, this instruction is a 3-byte one.

The memory status when all registers are specified is shown below.

Low address Restore Order Offset from USP
SP after execution -> Dummy area (-) -96
LAR (23) -94
LIR (22) -88
MDR (21) -84
Al (20) -80
A0 (19) -76
D1 (18) -72
DO 17) -68
A3 (16) -64
A2 (15) -60
D3 (14) -56
D2 (13) -52
MCVF (12) -48
MCRL (11) -44
MCRH (19) -40
MDRQ (9) -36
E1 (8) -32
EO (7) -28
E7 (6) -24
E6 (5) -20
E5 (4) -16
E4 (3) -12
E3 (2) -8
E2 (1) 4
SP before execution -> -0
High address

68 MOVM

Chapter 2 Instruction description

64-bit sign-extension of word data

EXT Reg

Operation When Reg[31]=0, 0x00000000 -> MDR
When Reg[31]=1, 0XFFFFFFFF -> MDR

This instruction sign-extends Reg to 64 bits, and transfers the upper 32 bits to MDR. The

contents of Reg are not changed.

Note V|C|N|Z

Assembler mnemonic

Size

ext Dn

ext Rn

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

EXT

69

Chapter 2 Instruction description

EX m 32-bit sign-extension of half-word data

EXTH Reg

Operation| 1 .1 Reg[15]=0, Regt & 0x0000FFFF > Reg
When Reg[15]=1, Reg | 0OXFFFF0000 -> Reg

This instruction sign-extends the lower 16 bits of Reg to 32 bits, and stores them in Reg.

Assembler mnemonic Note VIC|IN|Z| Size
exth Dn e 1
exth Rn — | =1=1= 3

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

G When the instruction has an operand register consisting of other than data register (Dn) for 1
operand operation, it is implemented by instruction swapping and the assembler constitutes

the following instruction. exth Rn, Rn

EXTH Reg1, Reg2

Operation When Reg1[15]=0, Regl & 0x0000FFFF -> Reg2
When Regl[15]=1, Regl | 0OXFFFF0000 -> Reg2

This instruction sign-extends thelower 16 bits of Regl to 32 bits, and stores them into

Reg2. The contents of Regl are not changed.

Assembler mnemonic Note VICI|N|Z/| Size

exth Rm, Rn | =

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

70 EXTH

Chapter 2 Instruction description

EX]-HU 32-bit zero-extension of half-word data

EXTHU Reg

Operation When Reg[15]=0, Reg & 0x0000FFFF -> Reg
When Reg[15]=1, Reg | 0OXFFFF0000 -> Reg

This instruction sign-extends the lower 16 bits of Reg to 32 bits, and stores them in Reg.

Assembler mnemonic Note VICI|IN|Z| Size
exthu Dn e 1
exthu Rn S S I 3

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

G When the instruction has an operand register consisting of other than data register (Dn) for 1
operand operation, it is implemented by instruction swapping and the assembler constitutes
the following instruction. exthu Rn, Rn

EXTHU Reg1, Reg2

Operation When Regl[15]=0, Regl & 0x0000FFFF -> Reg2
When Regl[15]=1, Regl | 0OxFFFF0000 -> Reg2

This instruction zero-extends the lower 16 bits of Regl to 32 bits, and stores them into

Reg2. The contents of Regl are not changed.

Assembler mnemonic Note VICIN|Z| Size

exthu Rm, Rn -
Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

EXTHU 7]

Chapter 2 Instruction description

EX]B 32-bit sign-extension of byte data

EXTB Reg

Operation When Rn[7]=0, Reg & 0x000000FF -> Reg
When Rn[7]=1, Reg | OXFFFFFF00 -> Reg
This instruction sign-extends the lower 8 bits of Reg to 32 bits, and stores them in Reg.
Assembler mnemonic Note VICIN|Z]| Size
extb Dn o Bl B 1
extb Rn N 3

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

‘ When the instruction has an operand register consisting of other than data register (Dn) for 1
= operand operation, it is implemented by instruction swapping and the assembler constitutes
the following instruction. extb Rn, Rn

EXTB Reg1, Reg2

Operation When Regl[7]=0, Regl & 0x000000FF -> Reg2
When Regl[7]=1, Regl | 0OxFFFFFF00 -> Reg2

This instruction zero-extends the lower 8 bits of Regl to 32 bits, and stores them into

Reg2. The contents of Regl are not changed.

Assembler mnemonic Note VICIN|Z| Size

extb Rm, Rn - =-1-1- -

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

72 EXTB

EX].B U 32-bit zero-extension of byte data

Chapter 2 Instruction description

EXTBU Reg

Operation Reg & 0x000000FF -> Rn

This instruction zero-extends the lower 8 bits of Reg to 32 bits, and stores them in Reg.

VICIN|Z | Size

Assembler mnemonic Note
extbu Dn — =] =1= 1
extbou Rn - === 3
Flag change
VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.
G When the instruction has an operand register consisting of other than data register (D) for 1
= operand operation, it is implemented by instruction swapping and the assembler constitutes

the following instruction.

extbu Rn, Rn

EXTBU Reg1, Reg2

Operation| pooq & 0x000000FF -> Reg2

Reg2. The contents of Regl are not changed.

This instruction zero-extends the lower 8 bits of Regl to 32 bits, and stores them into

Assembler mnemonic

Note

Size

extbu Rm, Rn

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

EXTBU

73

Chapter 2 Instruction description

L R Data clear

EXTBU Reg

Operation Reg & 0x000000FF -> Rn

This instruction clears the contents of Reg.

Assembler mnemonic Note VIC|N|Z| Size

clr Dn - =-1-11 1

cr Rn - =-1-11 3

Flag change

VEF: Always 0.
CF: Always 0.
NF: Always 0.
ZF: Alwaysl.

74 CLR

Chapter 2 Instruction description

D CP F Data cache pre-fetch

DCPF Mem ar e

Operation DCPF (Reg)

mem_cline(Reg) -> [Data Cache]

DCPF (Ri, Rm)

mem_cline(Ri + Rm) -> [Data Cache]
DCPF (disp, Reg)

mem_cline(Reg + disp) -> [Data Cache]
DCPF (SP)

mem_cline(SP) -> [Data Cache]

Assembler mnemonic Note VICIN|Z| Size
depf (Rm)
depf (Ri, Rm) —|=1=1=
dcpf (d8, Rm) d8 is sign-extended. N I
depf (d24, Rm) d24 is sign-extended. - 1_1_
dcpf (d32, Rm) _ |- 1=1_
depf (SP) —1=1-1=

Flag change

W|IN O |||

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

G The contents of the register are not updated through executing DCPF instruction.
G DCPF instruction do not cause illegal memory access exception, address alignment
z exception and MMU exception.

DCPF 75

Chapter 2 Instruction description

Addition

ADD Reg1, Reg2

Operation Regl + Reg2 -> Reg2

This instruction adds the contents of Regl and Reg2 to each other, and stores the result in

Reg2.

Assembler mnemonic Note VICINI|Z| Size
add Dm, Dn AlA A A 1
add Dm, An AlAA A 2
add Am, Dn A|A|A A 2
add Am, An AlAA|A 2
add Rm, Rn AlAA A 3

Flag change

VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases

CF: 1 when carry from bit 31 occurs; 0 in all other cases

NF: 1 when bit 31 of the operation results is 1; 0 in all other cases

ZF: 1 when the operation results are 0; 0 in all other cases

ADD Reg1, Reg2, Reg3
Operation Regl + Reg2 -> Reg3

This instruction adds the contents of Regl and Reg?2 to each other, and stores the result in
Reg3.

Assembler mnemonic Note VICI|N|Z| Size
add Rm, Rn, Rd AlA|A|A 4

Flag change

VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases
CF: 1 when carry from bit 31 occurs; 0 in all other cases
NF: 1 when bit 31 of the operation results is 1; 0 in all other cases

ZF: 1 when the operation results are 0; 0 in all other cases

76 ADD

Chapter 2 Instruction description

ADD imm, Reg o5
QO =
: Q
Operation (sign_ext)imm + Reg -> Reg _g g
2
This instruction adds imm and Reg to each other, and stores the result in Reg. =
Assembler mnemonic Note VICIN| Z]| Size
add immg, Dn imm8 is sign-extended. AlAJA]A|l 2
add imm16, Dn imm16 is sign-extended. AlA|A] A 4
add imm32, Dn AlA|A] A 6
add imm8, An imm8 is sign-extended. AlA|A| A 2
add imm16, An imm16 is sign-extended. AlA|A|A| 4
add imm32, An AlA|A] A 6
add imm8, Rn imm8 is sign-extended. AlATA] A 4
add imm24, Rn imm24 is sign-extended. AlA|A]| A 6
add imm32, Rn AlA|A] A 7
Flag change
VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases
CF: 1 when carry from bit 31 occurs; 0 in all other cases
NF: 1 when bit 31 of the operation results is 1; 0 in all other cases
ZF: 1 when the operation results are 0; 0 in all other cases
ADD imm, SP
Operation (sign_ext)imm + SP -> SP
This instruction adds imm and SP to each other, and stores the result in SP.
Assembler mnemonic Note VICI|IN|Z]| Size
add imm8, SP imm8 is sign-extended. AlA|A]A| 3
add imm16, SP imm16 is sign-extended. AlA|A] A 4
add imm32, SP AlA|A|A 6
Flag change
VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

ADD 77

Chapter 2 Instruction description

ADDC

Addition with a carry

ADDC Reg1, Reg2

Operation| peoi + Reg2 + EPSW.C -> Reg2

This instruction adds the contents of Regl and Reg2 to the C flag, and stores the result in

Reg2.
Assembler mnemonic Note VIC|N|Z| Size
addc Dm, Dn AlAA|A 2
addc Rm, Rn AlAIA|A 3

Flag change

VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases
CF: 1 when carry from bit 31 occurs; 0 in all other cases

NF: 1 when bit 31 of the operation results is 1; 0 in all other cases
ZF: 1 when the Z flag before the operation is 1 and the operation results are 0;0 in all other cases.

ADDC Reg1, Reg2, Reg3

Operation| Rpeoi + Reg2 + EPSW.C -> Reg3

This instruction adds the contents of Regl and Reg2 to the C flag, and stores the result in

Reg3.
Assembler mnemonic Note V|C|IN|Z| Size
addc Rm, Rn, Rd AlAlATA 4

Flag change

VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases
CF: 1 when carry from bit 31 occurs; 0 in all other cases

NF: 1 when bit 31 of the operation results is 1; 0 in all other cases
ZF: 1 when the Z flag before the operation is 1 and the operation results are 0;0 in all other cases.

78 ADDC

Chapter 2 Instruction description

ADDC imm, Reg

Operation (sign_ext)imm + Reg + EPSW.C -> Reg

This instruction adds imm and Reg to the C flag, and stores the result in Reg.

Assembler mnemonic Note V|IC|N|Z| Size
addc imm8, Rn imm8 is sign-extended. AlA|A]|A 2
addc imm24, Rn imm24 is sign-extended. A|lA|A]A 3
addc imm32, Rn A|A|A]A 1

Flag change

VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases

CF: 1 when carry from bit 31 occurs; 0 in all other cases

NF: 1 when bit 31 of the operation results is 1; 0 in all other cases

ZF: 1 when the Z flag before the operation is 1 and the operation results are 0;0 in all other cases.

ADDC

79

Chapter 2 Instruction description

S UB Subtraction

SUB Reg1, Reg2

Operation Reg2 - Regl -> Reg2

This instruction subtracts the contents of Regl from Reg2 to each other, and stores the

result in Reg?2.

Assembler mnemonic Note VICIN|Z| Size
sub Dm, Dn AlA|AA 2
sub Dm, An AlAA|A 2
sub Am, Dn AlAA A 2
sub Am, An AlAA A 2
sub Rm, Rn AlAJA A 3

Flag change
VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases
CF: 1 when carry from bit 31 occurs; 0 in all other cases
NF: 1 when bit 31 of the operation results is 1; 0 in all other cases
ZF: 1 when the operation results are 0; 0 in all other cases
SUB Reg1, Reg2, Reg3
Operation
Reg2 - Regl -> Reg3
This instruction subtracts the contents of Regl from Reg2, and stores the result in Reg3.
Assembler mnemonic Note VICIN|Z| Size
sub Rm, Rn, Rd AlAIA|A 4
Flag change
VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases
CF: 1 when carry from bit 31 occurs; 0 in all other cases
NF: 1 when bit 31 of the operation results is 1; 0 in all other cases
ZF: 1 when the operation results are 0; 0 in all other cases

80 SUB

Chapter 2 Instruction description

SUB imm, Reg

Operation Reg - (sign_ext)imm -> Reg
This instruction subtracts the sign-extended imm from Reg, and stores the result in Reg.
Assembler mnemonic Note VICIN|Z| Size

sub imm32, Dn AlAIALA 6
sub imm32, An AlA A A 6
sub imm8, Dn imm8 is sign-extended. AlA|A|A 4
sub imm24, An imm24 is sign-extended. AlAA A 6
sub imm32, Rn AlAA A 7

Flag change

VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases
CF: 1 when carry from bit 31 occurs; 0 in all other cases
NF: 1 when bit 31 of the operation results is 1; 0 in all other cases

ZF: 1 when the operation results are 0; 0 in all other cases

suB 81

Chapter 2 Instruction description

S UB C Subtraction with a carry

SUBC Reg1, Reg2

Operation Reg2 - Reg2 - EPSW.C -> Reg2

This instruction subtracts the contents of Regl including the C flag from Reg2, and stores

the result in Reg2.

V|C|N|Z| Size

Assembler mnemonic Note

subc Dm, Dn
subc Rm, Rn

Flag change

VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases
CF: 1 when carry from bit 31 occurs; 0 in all other cases

NF: 1 when bit 31 of the operation results is 1; 0 in all other cases
ZF: 1 when the Z flag before the operation is 1 and the operation results are 0;0 in all other cases.

SUBC Reg1, Reg2, Reg3

Operation| peoy - Regl - EPSW.C -> Reg3

This instruction subtracts the contents of Regl including the C flag from Reg2, and stores

the result in Reg3.

Assembler mnemonic Note Size

subc Rm, Rn, Rd

<
>0
>Z
>IN

Flag change

VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases
CF: 1 when carry from bit 31 occurs; 0 in all other cases

NF: 1 when bit 31 of the operation results is 1; 0 in all other cases
ZF: 1 when the Z flag before the operation is 1 and the operation results are 0;0 in all other cases.

{2 SUBC

Chapter 2 Instruction description

SUBC imm, Reg

Operation Reg - (sign_ext)imm - EPSW.C -> Reg

This instruction subtracts the sign-extended imm and the C flag from Reg, and stores the

result in Reg.

Assembler mnemonic Note VICI|IN| Z| Size
subc imm8, Rn imm8 is sign-extended. A|lA|A|A 4
subc imm24, Rn imm24 is sign-extended. A|lA|A]A 6
subc imm32, Rn A|lA|A|A 7

Flag change

VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases

CF: 1 when carry from bit 31 occurs; 0 in all other cases

NF: 1 when bit 31 of the operation results is 1; 0 in all other cases

ZF: 1 when the Z flag before the operation is 1 and the operation results are 0;0 in all other cases.

SUBC 83

Chapter 2 Instruction description

Signed multiplication

MUL Reg1, Reg2

Operation Regl * Reg2 -> {MDR, Reg2}

The contents of Regl (signed 32-bit integer: multiplicand) and Reg2 (signed 32-bit inte-
ger: multiplier) are multiplied, and the upper 32 bits of the result (64 bits) are written
into MDR and the lower 32 bits into Reg2.

Assembler mnemonic Note VICINI|Z| Size
mul Dm, Dn 212 1A1A 2
mul Rm, Rn 21?2 1A|A 3

Flag change

VF: Undefined

CF: Undefined

NF: 1 when bit 31 of the lower32 bits of the operation result is 1; 0 in all other cases

ZF: 1 when the lower 32 bits of the operation result is 0 and the operation results are 0;

0 in all other cases
MUL Reg1, Reg2, Reg3, Reg4
Operation Regl * Reg2 -> { Reg3, Reg4 }

The contents of Regl (signed 32-bit integer: multiplicand) and Reg2 (signed 32-bit inte-
ger: multiplier) are multiplied, and the upper 32 bits of the result (64 bits) are written
into Reg3 and the lower 32 bits into Reg4.

Assembler mnemonic Note VICIN|Z/| Size
mul Rm, Rn, Rd1, Rd2 Rd1=Rd2 cannot be specified. AlA|AA 4

Flag change

VF: Undefined

CF: Undefined

NF: 1 when the MSB of the operation result (64 bits) is 1; 0 in all other cases
ZF: 1 when the operation result (64 bits) is 0; 0 in all other cases

G When Rd1=Rd2 is specified, the operation result is not guaranteed.

{4 MUL

Chapter 2 Instruction description

MUL imm, Reg

Operation

(sign_ext)imm * Reg -> { MDR , Reg }

the lower 32 bits into Reg.

imm (signed 32-bit integer: multiplicand) and the contents of Reg (signed 32-bit integer: mul-
tiplier) are multiplied, and the upper 32 bits of the result (64 bits) are written into MDR and

Assembler mnemonic Note V|IC|N|Z| Size
mul imm8, Rn imm8 is sign-extended. 21?2 1A|A 4
mul imm24, Rn imm24 is sign-extended. 21?2 A A 6
mul imm32, Rn 21?2 |AA 7

Flag change
VF: Undefined
CF: Undefined
NF: 1 when bit 31 of the lower32 bits of the operation result is 1; 0 in all other cases
ZF: 1 when the lower 32 bits of the operation result is 0 ; 0 in all other cases
MUL

85

Chapter 2 Instruction description

MUL U Unsigned multiplication

MULU Reg1, Reg2

Operation Regl * Reg2 -> {MDR, Reg2}

The contents of Regl (unsigned 32-bit integer: multiplicand) and Reg2 (unsigned 32-bit
integer: multiplier) are multiplied, and the upper 32 bits of the result (64 bits) are written
into MDR and the lower 32 bits into Reg2.

Assembler mnemonic Note VICIN|Z| Size
mulu Dm, Dn 212 1A1A 2
mulu Rm, Rn 71?2 1A|A 3

Flag change
VF: Undefined
CF: Undefined
NF: 1 when bit 31 of the lower32 bits of the operation result is 1; 0 in all other cases
ZF: 1 when the lower 32 bits of the operation result is 0 and the operation results are 0;
0 in all other cases

MULU Reg1, Reg2, Reg3, Reg4
Operation Regl * Reg2 -> { Reg3, Reg4 }

The contents of Regl (signed 32-bit integer: multiplicand) and Reg2 (signed 32-bit inte-
ger: multiplier) are multiplied, and the upper 32 bits of the result (64 bits) are written
into Reg3 and the lower 32 bits into Reg4.

Assembler mnemonic Note VIC|IN|Z| Size
mulu Rm, Rn, Rd1, Rd2 Rd1=Rd2 cannot be specified. 21?2 1A A 4

Flag change

VF: Undefined

CF: Undefined

NF: 1 when the MSB of the operation result (64 bits) is 1; 0 in all other cases
ZF: 1 when the operation result (64 bits) is 0; 0 in all other cases

G When Rd1=Rd2 is specified, the operation result is not guaranteed.

86 MULU

Chapter 2 Instruction description

MULU imm, Reg

Operation (sign_ext)imm * Reg -> Reg
imm (unsigned 32-bit integer: multiplicand) and Reg (unsigned 32-bit integer: multiplier) are
multiplied, and the upper 32 bits of the result (64 bits) are written into MDR and the lower 32
bits into Reg.

Assembler mnemonic Note V|C|N|Z| Size
mulu imm8, Rn imm8 is sign-extended. 21?2 1A|A 4
mulu imm24, Rn imm24 is sign-extended. 21?2 A A 6
mulu imm32, Rn 71?2 |AA 7

Flag change

VF: Undefined

CF: Undefined

NF: 1 when bit 31 of the lower32 bits of the operation result is 1; 0 in all other cases
ZF: 1 when the lower 32 bits of the operation result is 0 ; 0 in all other cases

MULU 87

Chapter 2 Instruction description

DII Signed divide

DIV Reg1, Reg2

Operation { MDR , Reg2 / Regl -> Reg2
{ MDR , Reg2 } % Regl -> MDR
The signed 64-bit integer obtained by linking MDR (upper 32 bits of the dividend) and Reg2
(lower 32 bits of the dividend) is divided by Regl (signed 32-bit integer: divisor), and the re-
mainder (32 bits) is written into MDR and the quotient (32 bits) into Reg2.
When the quotient cannot be expressed as a 32-bit signed number, the V flag is set to 1 and
MDR and Reg?2 are undefined.
In addition, the V flag also is set to 1 when zero division (divisor = 0) is performed
Assembler mnemonic Note V IC IN |z | Size
div Dm, Dn 71?1 AA] 2
div. Rm, Rn 21?2A A 3

Flag change

Normal (Operation finishes normally)
VF: Always 0. This indicates that the quotient is a 32-bit signed integer without overflow.
CF: Undefined
NF: 1 when MSB of the quotient (32 bits) is 1; 0 in all other cases
ZF: 1 when the quotient (32 bits) is 0; 0 in all other cases
When the quatient cannot be indicated as a 32-bit signed value, or when in zero divide.
VEF: Always 1.
CF: Undefined
NF: Undefined
ZF: Undefined

This instruction is a multi-cycle instruction, and the number of cycles differs depending
on the significant number of bytes of the dividend (64bits).The significant number of
bytes from the LSB of the dividend is judged (note that MDR is judged in word units),
and the operation is only performed for the range containing these significant values.
Consequently the fewer significant number of bytes of the dividend, the faster operation
result can be obtained.

Refer to the instruction list for the number of cycles.

[Example]

the dividend significant number of bytes
0x00000000000001112 bytes

O0xFFFFFFFFFFF80000 3 bytes

88 DIV

Chapter 2 Instruction description

DIV(] Unsigned divide

DIVU Reg1, Reg2

Operation { MDR , Reg2} / Regl -> Reg?2
{ MDR , Reg2 } % Regl -> MDR
The unsigned 64-bit integer obtained by linking MDR (upper 32 bits of the dividend) and
Reg2 (lower 32 bits of the dividend) is divided by Regl (unsigned 32-bit integer: divisor),
and the remainder (32 bits) is written into MDR and the quotient (32 bits) into Reg2.
When the quotient cannot be expressed as a 32-bit unsigned number, the V flag is set to 1
and MDR and Reg?2 are undefined.
In addition, the V flag also is set to 1 when zero division (divisor = 0) is performed.
Assembler mnemonic Note VIC IN |7z | Size
divu Dm, Dn 21?2 |A A 2
divu Rm, Rn ?21A|A 3

Flag change

Normal (Operation finishes normally)
VF: Always 0. This indicates that the quotient is a 32-bit signed integer without overflow.
CF: Undefined
NF: 1 when MSB of the quotient (32 bits) is 1; 0 in all other cases
ZF: 1 when the quotient (32 bits) is 0; 0 in all other cases
When the quatient cannot be indicated as a 32-bit signed value, or when in zero divide.
VF: always 1. This indicates that the quotient has overflowed.
CF: Undefined
NF: Undefined
ZF: Undefined

This instruction is a multi-cycle instruction, and the number of cycles differs depending
on the significant number of bytes of the dividend (64bits).The significant number of
bytes from the LSB of the dividend is judged (note that MDR is judged in word units),
and the operation is only performed for the range containing these significant values.
Consequently the fewer significant number of bytes of the dividend, the faster operation
result can be obtained.

Refer to the instruction list for the number of cycles.

[Example]

the dividend significant number of bytes
0x00000000000001112 bytes

OxFFFFFFFFFFF80000 3 bytes

DIVU 89

Chapter 2 Instruction description

Increment by 1

INC Reg

Operation
Reg + 1 -> Reg
1 is added to Reg, and the result is stored in Reg.

Assembler mnemonic Note V|IC|N| Z| Size
inc Dn AlAJA]A 1
inc An - |=1=-1- 1
inc Rn AlAJAA 3

Flag change
inc An

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

All other cases
VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases

CF: 1 when carry from bit 31 occurs; 0 in all other cases
NF: 1 when bit 31 of the operation results is 1; 0 in all other cases

ZF: 1 when the operation results are 0; 0 in all other cases

90 INC

Chapter 2 Instruction description

INCH ...

INC4 Reg

Operation
Reg + 4 -> Reg
4 is added to Reg, and the result id stored in Reg.

Assembler mnemonic Note VIC|N| Z| Size
inc4 An -1 1-1-1 1
inc4 Rn AlA|A|A 3

Flag change
inc An

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

All other cases
VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases

CF: 1 when carry from bit 31 occurs; 0 in all other cases
NF: 1 when bit 31 of the operation results is 1; 0 in all other cases

ZF: 1 when the operation results are 0; 0 in all other cases

INC4 9]

Chapter 2 Instruction description

Comparison

CMP Reg1, Reg2

Operation Reg?2 - Regl: EPSW

This instruction subtracts the contents of Regl from Reg2, and reflects the result to the

flag. The contents of Regl and Reg2 are not changes before and after execution.

Assembler mnemonic Note VICIN|Z| Size
cmp Dm, Dn m=n cannot be specified. AlATAIA 1
cmp Dm, An A|AA A 2
cmp Am, Dn AlAJA A 2
cmp Am, An m=n cannot be specified. AlATALTA 1
cmp Rm, Rn AlA|A A 3

Flag change

VF: 1 when overflow occurs as a 32-bit signed number; 0 in all other cases
CF: 1 when carry from bit 31 occurs; 0 in all other cases
NF: 1 when bit 31 of the operation results is 1; 0 in all other cases

ZF: 1 when the operation results are 0; 0 in all other cases

92

CMP

Chapter 2 Instruction description

CMP imm, Reg
Operation Rn2 - imm : EPSW
This instruction subtracts imm from Reg, and reflects the result to the flag. The contents of
Regl and Reg2 are not changes before and after execution. -
oS
S ©
Assembler mnemonic Note V|C|N|Z| Size %%
cmp imm8, Dn imm8 is sign-extended. AlA]A|A 2 8 =
cmp imm16, Dn imm16 is sign-extended. AlA|AA 4
cmp imm32, Dn AlA]AA 6
cmp imm8, An imm8 is sign-extended. AlATAIA 2
cmp imm16, An imm16 is sign-extended. AlATALA 4
cmp imm32, An A|A|A|A 6
cmp imm8, Rn imm8 is sign-extended. AlA]AA 4
cmp imm24, Rn imm24 is sign-extended. AlA]AA 6
cmp imm32, Rn AlA]AA 7
Flag change
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.
ZF : "1" when the operation result is "0"; "0" in all other cases.

cMP 93

Chapter 2 Instruction description

Logical product

AND Reg1, Reg2
Operation Regl & Reg2 -> Reg2
This instruction takes the logical product between Regl and Reg2, and stores the result in
Reg2.

Assembler mnemonic Note V|C|N|Z| Size
and Dm, Dn 010 |A A 2
and Rm, Rn 010]|A]|A 3

Flag change
VF: Always 0.
CF: Always 0.
NF: 1 when bit 31 of the operation result is 1, 0 in all other cases.
ZF: 1 when the operation result is 0, 0 in all other cases.

AND Reg1, Reg2, Reg3
Operation Regl & Reg2 -> Reg2
This instruction takes the logical product between Regl and Reg2, and stores the result in
Reg2.
Assembler mnemonic Note V|C|IN|Z| Size
and Rm, Rn, Rd 0]0]|A|A 4
Flag change
VF: Always 0.
CF: Always 0.
NF: 1 when bit 31 of the operation result is 1, 0 in all other cases.
ZF: 1 when the operation result is 0, 0 in all other cases.

94 AND

Chapter 2 Instruction description

AND imm, Reg

Operation (zero_ext)imm & Reg -> Reg
This instruction takes the logical product between zero-extended imm and Reg, and stores the
result in Reg.
Assembler mnemonic Note VICI|IN|Z]| Size
and imm3, Dn imma8 is zero-extended. 0[0|A|A]| 3
and imm16, Dn imm16 is zero-extended. 010 |A A 4
and imm32, Dn 010 |A A 6 c
and imm8, Rn imm8 is zero-extended. 010 |A A 4 = -%
and imm24, Rn imm24 is zero-extended. olo|AlA 6 -% £
and imm32, Rn 0]0 A |A 7 S E
Flag change
VF: Always 0.
CF: Always 0.

NF: 1 when bit 31 of the operation result is 1, 0 in all other cases.

ZF: 1 when the operation result is 0, 0 in all other cases.

AND 95

Chapter 2 Instruction description

AND imm16, PSW (Privileged instruction)

Operation| 1116 & EPSW[15:0] -> EPSW[15:0]

This instruction takes the logical product between imm16 and the lower 16 bits of EPSW, and
stores the result in the lower 16 bits of EPSW.

The upper 16 bits of EPSW (EPSW[32:16]) are not changed.

This instruction is a privileged instruction, and can be executed at the supervisor and monitor

levels.
Assembler mnemonic Note VICI|IN|Z| Size
and imm16, PSW AlA|A|A 4

Flag change

VF: The bit 3 of the operation result is set.
CF: The bit 2 of the operation result is set.
NF: The bit 1 of the operation result is set.
ZF: The bit 0 of the operation result is set.

‘ If this instruction is executed at user level, system exception (privileged instruction
= execution exception) occurs.

AND imm32, EPSW (Privileged instruction)

Operation imm32(SP) & EPSW -> EPSW

This instruction takes the logical product between imm32 and EPSW, and stores the result in
EPSW. This instruction is a privileged instruction, and can be executed at the supervisor and

monitor levels.

Assembler mnemonic Note VICIN|Z| Size

and imm32, EPSW AlA|A|A 6

Flag change

VF: The bit 3 of the operation result is set.
CF: The bit 2 of the operation result is set.
NF: The bit 1 of the operation result is set.
ZF: The bit 0 of the operation result is set.

‘ If this instruction is executed at user level, system exception (privileged instruction
= execution exception) occurs.

96 AND

Logical sum

Chapter 2 Instruction description

OR

Reg1, Reg2

Operation Regl | Reg2 -> Reg2
This instruction takes the logical sum between Regl and Reg2, and stores the result in Reg?2.
Assembler mnemonic Note VI|C Size
or Dm, Dn 010 2
or Rm,Rn 010 3
Flag change
VF: Always 0.
CF: Always 0.
NF: 1 when bit 31 of the operation result is 1, 0 in all other cases.
ZF: 1 when the operation result is 0, 0 in all other cases.
OR Reg1, Reg2, Reg3
Operation Regl | Reg2 -> Reg2
This instruction takes the logical sum between Regl and Reg2, and stores the resultin Reg3.
Assembler mnemonic Note VIC Z | Size
and Rm, Rn, Rd 010 A 4

Flag change

VEF: Always 0.
CF: Always 0.
NF: 1 when bit 31 of the operation result is 1, 0 in all other cases.

ZF: 1 when the operation result is 0, 0 in all other cases.

OR

97

Chapter 2 Instruction description

OR imm, Reg
Operation (zero_ext)imm | Reg -> Reg
This instruction takes the logical sum between zero-extended imm and Reg, and stores the
result in Reg.
Assembler mnemonic Note VICI|IN| Z]| Size
or imms8, Dn imm8 is zero-extended. 0[O0 |A|A| 3
or imm16, Dn imm16 is zero-extended. 0|10 |A |A 4
or imm32, Dn 010 |A A 6
or imm8, Rn imm8 is zero-extended. 0(0 A |A 4
or imm24, Rn imm24 is zero-extended. 0(0 A |A 6
or imm32, Rn 010 |A |A 7
Flag change
VEF: Always 0.
CF: Always 0.
NF: 1 when bit 31 of the operation result is 1, 0 in all other cases.
ZF: 1 when the operation result is 0, 0 in all other cases.

98

OR

Chapter 2 Instruction description

OR imm16, PSW (Privileged instruction)

Operation| ;11116 | EPSW[15:0] -> EPSW[15:0]
This instruction takes the logical sum between imm16 and the lower 16 bits of EPSW, and
stores the result in the lower 16 bits of EPSW.
The upper 16 bits of EPSW (EPSW[32:16]) are not changed.
This instruction is a privileged instruction, and can be executed at the supervisor and monitor
levels.
Assembler mnemonic Note VICIN|Z]| Size
or imm16, PSW AlA|A|A 4

Flag change

VEF: The bit 3 of the operation result is set.
CF: The bit 2 of the operation result is set.
NF: The bit 1 of the operation result is set.
ZF: The bit 0 of the operation result is set.

(1

If this instruction is executed at user level, system exception (privileged instruction

execution exception) occurs.

OR imm32, EPSW (Privileged instruction)

Operation

imm32(SP) | EPSW -> EPSW

This instruction takes the logical sum between imm32 and EPSW, and stores the result in

EPSW. This instruction is a privileged instruction, and can be executed at the supervisor and

monitor levels.

Assembler mnemonic

Note VIC|N|Z

Size

or imm32, EPSW

Flag change

VEF: The bit 3 of the operation result is set.
CF: The bit 2 of the operation result is set.
NF: The bit 1 of the operation result is set.
ZF: The bit 0 of the operation result is set.

If this instruction is executed at user level, system exception (privileged instruction

execution exception) occurs.

OR 99

Chapter 2 Instruction description

Exclusive-OR

XOR Reg1, Reg2

Operation Regl” Reg2 -> Reg2
This instruction takes the exclusive logical sum between Regl and Reg?2, and stores the result

in Reg2.

Assembler mnemonic Note VICI|N|Z/| Size
xor Dm, Dn 0|0 |A A 2
xor Rm, Rn 0|0 |A A 3

Flag change

VF: Always 0.

CF: Always 0.

NF: 1 when bit 31 of the operation result is 1, 0 in all other cases.

ZF: 1 when the operation result is 0, 0 in all other cases.

XOR Reg1, Reg2, Reg3

Operation Regl” Reg2 -> Reg2
This instruction takes the exclusive logical sum between Regl and Reg2, and stores the result

in Reg3.

Assembler mnemonic Note VICIN|Z| Size
xor Rm, Rn, Rd 0[0]|A|A 4
Flag change
VF: Always 0.
CF: Always 0.

NF: 1 when bit 31 of the operation result is 1, 0 in all other cases.

ZF: 1 when the operation result is 0, 0 in all other cases.

100 xor

Chapter 2 Instruction description

XOR imm, Reg

Operation (zero_ext)imm " Reg -> Reg

stores the result in Reg.

This instruction takes the exclusive logical sum between zero-extended imm and Reg, and

Assembler mnemonic Note VICI|IN|Z]| Size
xor imm16, Dn imm16 is zero-extended. 0[0 |A|A]| 4
xor imm32, Dn 010 |A A 6
xor imm8, Rn imm§8 is zero-extended. 010 |A|A 4
xor imm24,Rn imm24 is zero-extended. 0[O0 A |A 6
xor imm32, Rn 010 |A A 7
Flag change

VF: Always 0.
CF: Always 0.

NF: 1 when bit 31 of the operation result is 1, 0 in all other cases.

ZF: 1 when the operation result is 0, 0 in all other cases.

XorR 101

Chapter 2 Instruction description

NO T Reversion of all bits

NOT Reg
Operation| Reo A OxFFFFFFFF -> Reg
This instruction reverses all bits of Reg, and stores the result in Reg.

Assembler mnemonic Note VIC Size
not Dn 010 2
not Rn 01]0 3

Flag change
VF: Always 0.
CF: Always 0.
NF: 1 when bit 31 of the operation result is 1, 0 in all other cases.
ZF: 1 when the operation result is 0, 0 in all other cases.

102 Not

Chapter 2 Instruction description

BTST

BTST imm, Reg
Operation (zero_ext)imm & Reg : EPSW
The logical product of the zero-extended imm and Reg is executed, and the result is
reflected to the flag.
Assembler mnemonic Note VIC|N|Z | Size
btst imm8, Dn imm8 is zero-extended. ol ol Al A 3
btst imm16, Dn imm16 is zero-extended. ol ol Al A 4
btst imm32, Dn ol ol Al A 6
btst imm8, Rn imm8 is zero-extended. 0] 0| A|A 4
btst imm24, Rn imm24 is zero-extended. ol ol AlA 6
btst imm32, Rn ol ol AlA 7 o c
© 9
Flag change E_g
=53
VF : Always "0" mE .S
CF : Always "0"
NF : 1 when bit 31 of the operation result is 1; 0 in all other cases
ZF : 1 when the operation result is 0; 0 in all other cases
BTST imm, Mem
Operation BTST imm, (disp, Reg)
Mem8(disp, Reg) -> TMP[7:0]
0x000000 -> TMP[31:8]
imm & TMP : EPSW
BTST imm, (abs)
Mem8(abs) -> TMP[7:0]
0x000000 -> TMP[31:8]
imm & TMP : EPSW
The logical product of imm and the contents (byte data) of Mem zero-extended to 32
bits is executed, and the result is reflected to the flag.
Assembler mnemonic Note VIC|N|Z | Size
btst imm8, (d8, An) imm8 is zero-extended, and d8 is sign-extended. o]l ol A|A 4
btst imm8, (abs16) imm8 is zero-extended, and abs16 is zero-extended. | 0 | 0| A | A 5
btst imm8, (abs32) imm8 is zero-extended. olojA|A]| 7
Flag change
VF : Always "0"
CF : Always "0"
NF : 1 when bit 31 of the operation result is 1; 0 in all other cases
ZF : 1 when the operation result is 0; 0 in all other cases

% m % btst immS8, (abs16) implements AM33-2, AM33-2A,

AM34-1.

BTST 103

Chapter 2 Instruction description

BSE T Multiple bit tests and sets

BSET Reg, Mem

Operation goET Regl, (Reg2)

Mem8(Reg2) -> TMP[7:0]
0x000000 -> TMP[31:8]

TMP & Regl : EPSW

(TMP | Regl)[7:0] -> Mem8(Reg2)

1. The contents (byte data) of Mem are zero-extended to 32 bits and loaded into the internal tem-
porary register (TMP).
2. The logical product of the contents of the temporary register (TMP) and the contents of Reg is

taken and the operation flag results are reflected to EPSW.
3. The logical product of the contents of the temporary register (TMP) and the contents of Reg is

taken and the lower 8 bits of the result are stored in Mem.

Assembler mnemonic Note VIC [N |Z| Size
bset Dm, (An) 0|{0]|0|A|] 2
Flag change
VF : Always 0.
CF : Always 0.
NF : Always 0.
ZF : "1" when the operation result is "0", "0" in all other cases.

All operations for this instruction are executed in the bus-lock and interrupt prohibited

condition.

104 BSET

Chapter 2 Instruction description

BSET imm, Mem
Operation BTST imm, (disp, Reg)
Mem8(Reg + disp) -> TMP[7:0]
0x000000 -> TMP[31:8]
TMP & imm : EPSW
(TMP | imm) [7:0] -> mem8(Reg + disp)
BTST imm, (abs)
MemS8(abs) -> TMP[7:0]
0x000000 -> TMP[31:8]
TMP & imm : EPSW
(TMP | imm) [7:0] -> mem8(abs)
1. The contents (byte data) of Mem are zero-extended to 32 bits and loaded into the internal
temporary register (TMP).
2. The logical product of the contents of the temporary register (TMP) and imm is taken and the
operation flag results are reflected to PSW.
3. The logical product of the contents of the temporary register (TMP) and imm is taken and the
lower 8 bits of the result are stored in Mem.
Assembler mnemonic Note VIC|N|Z | Size
bset imm8, (d8, An) imm8 is zero-extended, and d8 is sign-extended. ololo]| A 4
bset imm8, (abs16) imm3 is zero-extended, and abs16 is zero-extended. | 0 | 0| 0 | A 5
bset imm8, (abs32) imm8 is zero-extended. ololo]|A 7
Flag change
VF : Always "0"
CF : Always "0"
NF : Always "0"
ZF : 1 when the operation result is 0; 0 in all other cases
G All operations for this instruction are executed in the bus-lock and interrupt prohibited
z condition.

. bset imm8, (abs16) implements AM33-2, AM33-2A,
AM34-1.

BTST 105

Chapter 2 Instruction description

B CLR Multiple bit tests and clearing

BCLR Reg, Mem

Operation|

BCLR Regl, (Reg2)
mem8(Reg2) -> TMP[7:0]
0x000000 -> TMP[31:8]
TMP & Regl : EPSW
(TMP &(Reg ~ OXxFFFFFFFF))[7:0] -> mem8(Reg2)

1. The contents (byte data) of Mem are zero-extended to 32 bits and loaded into the internal tem-
porary register (TMP).

2. The logical product of the contents of the temporary register (TMP) and the contents of Regl is
taken and the operation flag results are reflected to EPSW.

3. The logical product of the contents of the temporary register (TMP) and the logically inverted

contents of Regl is taken and the lower 8 bits of the result are stored in Mem.

Assembler mnemonic Note VIC [N |Z| Size
belr Dm, (An) 0{0]0|A| 2
Flag change

VF : Always 0.

CF : Always 0.

NF : Always 0.

ZF : "1" when the operation result is "0", "0" in all other cases.
G All operations for this instruction are executed in the bus-lock and interrupt prohibited

z condition.

106 BCLR

Chapter 2 Instruction description

BCLR imm, Mem
Operation BCLR imm, (disp, Reg)
mem8(Reg + disp) -> TMP[7:0]
0x000000 -> TMP[31:8]
TMP & imm : EPSW
(TMP & (imm * OXxFFFFFFFF)) -> mem8(Reg + disp)
BCLR imm, (abs)
mem8(abs2) -> TMP[7:0]
0x000000 -> TMP[31:8]
TMP & imm : EPSW
(TMP & (imm ~ OxFFFFFFFF)) -> mem§8(abs)
1. The contents (byte data) of Mem are zero-extended to 32 bits and loaded into the internal
temporary register (TMP).
2. The logical product of the contents of the temporary register (TMP) and imm is taken and the
operation flag results are reflected to EPSW.
3. The logical product of the contents of the temporary register (TMP) and the logically in-
verted data of imm is taken and the lower 8 bits of the result are stored in Mem.
Assembler mnemonic Note VIC|N|Z | Size
bclr imm8, (d8, An) imm8 is zero-extended, and d8 is sign-extended. ol olo]| A 4
belr imm8, (abs16) imm8 is zero-extended, and abs16 is zero-extended. | 0 | 0| 0 | A 5
belr imm8, (abs32) imm8 is zero-extended. ojolo|A| 7
Flag change
VF : Always "0"
CF : Always "0"
NF : Always "0"
ZF : 1 when the operation result is 0; 0 in all other cases

(

All operations for this instruction are executed in the bus-lock and interrupt prohibited
condition.

n belr imm8, (abs16) implements AM33-2, AM33-2A,
AM34-1.

BCLR 107

Chapter 2 Instruction description

ASR

Arbitrary-bit arithmetic shift right

ASR Reg1, Reg2

Operation | If (Regl & 0x0000001F)is not "0"
Reg2[0] -> EPSW.C

(sign-ext)(Reg2 >> (Regl & 0x0000001F)) -> Reg2
If (Regl & 0x0000001F) is "0"
PC + Code Size -> PC

Regl, and the result is written into Reg?2.

Rm & 0x0000001F

When (Regl & 0x0000001F) are 0, shift operation is not performed.
Only the lower 5 bits of Regl are effective and the upper bits are ignored.

Rm & 0x0000001F

Rn before execution

\

Rn after execution

MSB

The contents of Reg2 are arithmetically shifted to the right by the number of bits specified by

LSB C flag
Assembler mnemonic Note V IC N |z | Size
asr Dm, Dn The contents of the lower 5 bits in Dm are other than "0" TIAAJA] 2

The contents of the lower 5 bits in Dm are "0" 21?2 1A]A
H H n n ‘7
asr Rm, Rn The contents of the lower 5 bits in Rm are other than "0 PIA|A|A 3
The contents of the lower 5 bits in Rm are "0" 21?7 |A A

Flag change

When (Regl & 0x00001F) is not "0"
VF: Undefined
CF: Reflects the value of the bit initially shifted out

ZF: "1" when the operation result is "0", and "0" in all other cases.
When (Regl & 0x00001F) is "0"

VF: Undefined

CF: Undefined

ZF: "1" when the register (Reg2) is "0", and "0" in all other cases.

NF: "1" when bit 31 of the operation result is "1", and "0" in all other cases.

NF: "1" when bit 31 of the register (Reg2) is "1", and "0" in all other cases.

108 ASR

Chapter 2 Instruction description

ASR Reg1, Reg2, Reg3

Operation If (Regl & 0x0000001F) is not "0"
Reg2[0] -> EPSW.C
(sign-ext)(Reg2 >> (Regl & 0x0000001F)) -> Reg2
If (Regl & 0x0000001F) is "0"
PC + Code Size -> PC

Regl, and the result is written into Reg2.
When (Regl & 0x0000001F) are 0, shift operation is not performed.
Only the lower 5 bits of Regl are effective and the upper bits are ignored.

Rm & 0x0000001F Rm & 0x0000001F

Rn before execution

\

Rd after execution

The contents of Reg2 are arithmetically shifted to the right by the number of bits specified by

MSB LSB
Assembler mnemonic Note V|C Z | Size
H H nAn 9
asr Rm, Rn, Rd The contents of the lower 5 bits in Rm are other than "0 P A A 4
The contents of the lower 5 bits in Rm are "0" ?217? A
Flag change

When (Regl & 0x00001F) is not "0"
VF: Undefined
CF: Reflects the value of the bit initially shifted out
NF: "1" when bit 31 of the operation result is "1", and "0" in all other cases.
ZF: "1" when the operation result is "0", and "0" in all other cases.
When (Regl & 0x00001F) is "0"
VF: Undefined
CF: Undefined
NF: "1" when bit 31 of the register (Reg2) is "1", and "0" in all other cases.
ZF: "1" when the register (Reg2) is "0", and "0" in all other cases.

ASR 109

Chapter 2 Instruction description

ASR imm, Reg

Operation | If (imm & 0x0000001F)is not "0"

Reg2[0] -> EPSW.C

(sign-ext)(Reg2 >> (imm & 0x0000001F)) -> Reg
If (imm & 0x0000001F) is "0"

PC + Code Size -> PC

The contents of Reg are arithmetically shifted to the right by the number of bits specified by the
lower 5 bits of imm, and the result is written into Reg.
When the imm lower 5 bits are 0, shift operation is not performed.

Only the lower 5 bits in imm are effective and the upper bits are ignored.

imm & 0x000000!F imm & 0x0000!F

Rn before execution

Rn after execution

MSB LSB Cflag
Assembler mnemonic Note VIC N |z | Size
asr imm8, Dn When (imm& 0x0000001F) is not "0" ?IAAJA| 3
When (immé& 0x0000001F) is "0" 21?2 1A]A
asr imm8, Rn When (imm& 0x0000001F) is not "0" ?IA[A]A 4
When (imm& 0x0000001F) is "0" 2192 1AA
asr imm24, Rn When (imm& 0x0000001F) is not "0" s lalalal s
When (imm& 0x0000001F) is "0" 212 1A A
asr imm32, Rn When (immé& 0x0000001F) is not "0" 21 A|AA 7
When (imm& 0x0000001F) is "0" 21?2 1AA
Flag change

When (imm & 0x0000001F) is not "0"
VF: Undefined
CF: Reflects the value of the bit initially shifted out
NF: "1" when bit 31 of the operation result is "1", and "0" in all other cases.
ZF: "1" when the operation result is "0", and "0" in all other cases.
When (imm & 0x0000001F) is "0"
VF: Undefined
CF: Undefined
NF: "1" when bit 31 of the register (Reg) is "1", and "0" in all other cases.
ZF: "1" when the register (Reg) is "0", and "0" in all other cases.

110 AsSR

Chapter 2 Instruction description

Arbitrary-bit logical shift right

LSR Reg1, Reg2

Operation | If (Regl & 0x0000001F)is not "0"

Reg2[0] -> EPSW.C

(zero-ext)(Reg2 >> (Regl & 0x0000001F)) -> Reg2
If (Regl & 0x0000001F) is "0"

PC + Code Size -> PC

The contents of Reg2 are logically shifted to the right by the number of bits specified by the
lower 5 bits of Regl, and the result is written into Reg?2.

When the contents of the lower 5 bits in Regl are 0, shift operation is not performed.

Only the lower 5 bits of Regl are effective and the upper bits are ignored.

Rm & 0x0000001F Rm & 0x0000001F

Rn before

execution
Rn after 00...00
execution

MSB

LSB C flag
Assembler mnemonic Note VICIN |Z Size
Isr Dm, Dn The contents of the lower 5 bits in Dm are other than "0" 7?IA[AJA| 2

The contents of the lower 5 bits in Dm are "0" 21?2 1AA
. . nAn 9
Isr Rm. Rn The contents of the lower 5 bits in Rm are other than "0 AlA|A 3
The contents of the lower 5 bits in Rm are "0" 21?27 1A 1A

Flag change

When (Regl & 0x0000001F) is not "0"
VF: Undefined
CF: Reflects the value of the bit initially shifted out
NF: "1" when bit 31 of the operation result is "1", and "0" in all other cases.
ZF: "1" when the operation result is "0", and "0" in all other cases.
When (Regl & 0x0000001F) is "0"
VF: Undefined
CF: Undefined
NF: "1" when bit 31 of the register (Reg2) is "1", and "0" in all other cases.
ZF: "1" when the register (Reg2) is "0", and "0" in all other cases.

LSR 111

Chapter 2 Instruction description

LSR Reg1, Reg2, Reg3

Operation If (Regl & 0x0000001F) is not "0"
Reg2[0] -> EPSW.C
(zero-ext)(Reg2 >> (Regl & 0x0000001F)) -> Reg3
If (Regl & 0x0000001F) is "0"
PC + Code Size -> PC

The contents of Reg2 are logically shifted to the right by the number of bits specified by the
lower 5 bits of Regl, and the result is written into Reg3.

When the lower 5 bits of Reg 1 are 0, shift operation is not performed.

Only the lower 5 bits of Regl are effective and the upper bits are ignored.

Rm & 0x0000001F Rm & 0x0000001F

Rn before

execution
Rd afte.r 00..00 |:|
execution

wsB LsB C flag
Assembler mnemonic Note VICIN |Z Size
H 1 nAan {)
Isr Rm, Rn, Rd The contents of the lower 5 bits in Rm are other than "0 AlA|A 4
The contents of the lower 5 bits in Rm are "0" 21 ?21A | A

Flag change

When (Regl & 0x0000001F) is not "0"
VF: Undefined
CF: Reflects the value of the bit initially shifted out
NF: "1" when bit 31 of the operation result is "1", and "0" in all other cases.
ZF: "1" when the operation result is "0", and "0" in all other cases.
When (Regl & 0x0000001F) is "0"
VF: Undefined
CF: Undefined
NF: "1" when bit 31 of the register (Reg2) is "1", and "0" in all other cases.
ZF: "1" when the register (Reg2) is "0", and "0" in all other cases.

112 LsSR

Chapter 2 Instruction description

LSR imm, Reg

Operation | If (imm & 0x0000001F)is not "0"

Reg[0] -> EPSW.C

(zero-ext)(Reg2 >> (imm & 0x0000001F)) -> Reg
If (imm & 0x0000001F) is "0"

PC + Code Size -> PC

The contents of Reg are arithmetically shifted to the right by the number of bits specified by the
lower 5 bits of imm, and the result is written into Reg.
When the imm lower 5 bits are 0, shift operation is not performed.

Only the lower 5 bits in imm are effective and the upper bits are ignored.

imm & 0x0000001F imm & 0x0000001F

Rn before

execution

ﬂs\\\\\\\\‘\‘\““-~;

Rn after
. 00...00
execution

MsB LSB C flag
Assembler mnemonic Note VICIN |Z Size
Isr imm8, Dn When the imm lower 5 bits are not "0" ?IA|AJA| 3
When the imm lower 5 bits are "0" 21?21A1A
Isr imm8, Rn When the imm lower 5 bits are not "0" ?IA|AlA| 4
When the imm lower 5 bits are "0" 212 1A]A
Isr imm24, Rn When the imm lower 5 bits are not "0" 20AAlA| 6
When the imm lower 5 bits are "0" 2021A1A
ls imm32, Rn When the imm lower 5 bits are not "0" 2 1A |A|A 7
When the imm lower 5 bits are "0" 71?2 |AA
Flag change

When (imm & 0x0000001F) is not "0"
VF: Undefined
CF: Reflects the value of the bit initially shifted out
NF: "1" when bit 31 of the operation result is "1", and "0" in all other cases.
ZF: "1" when the operation result is "0", and "0" in all other cases.
When (imm & 0x0000001F) is "0"
VF: Undefined
CF: Undefined
NF: "1" when bit 31 of the register (Reg) is "1", and "0" in all other cases.
ZF: "1" when the register (Reg) is "0", and "0" in all other cases.

LR 113

Chapter 2 Instruction description

ASL

Arbitrary-bit arithmetic shift left

ASL Reg1, Reg2

Operation | If (Regl & 0x0000001F)is not "0"
(Reg2 << (Regl & 0x0000001F)) -> Reg2
If (Regl & 0x0000001F) is "0"
PC + Code Size -> PC

When the contents of the lower 5 bits in Reg 1 are 0, shift operation is not performed.
Only the lower 5 bits of Regl are effective and the upper bits are ignored.
"0" is input to the LSB side.

The contents of Reg 2 are arithmetically shifted to the left by the number of bits specified by the

lower 5 bits of Regl, and the result is written into Reg 2.

Rm & 0x0000001F Rm & 0x0000001F
Rn before execution
Rn after execution 00..00
MSB LSB
Assembler mnemonic Note V IC N |z | Size

asl Dm, Dn The contents of the lower 5 bits in Dm are other than "0" 21?21 A|A 2

The contents of the lower 5 bits in Dm are "0" 271?21A]A
asl Rm, Rn The contents of the lower 5 bits in Rm are other than "0 21?2 1AJA| 3

The contents of the lower 5 bits in Rm are "0" 21?2 1AA

Flag change

When (Regl & 0x00001F) is not "0"
VF: Undefined
CF: Undefined
NF: "1" when bit 31 of the operation result is "1", and "0" in all other cases.
ZF: "1" when the operation result is "0", and "0" in all other cases.
When (Regl & 0x0000001F) is "0"
VF: Undefined
CF: Undefined
NF: "1" when bit 31 of the register (Reg2) is "1", and "0" in all other cases.
ZF: "1" when the register (Reg2) is "0", and "0" in all other cases.

114 AsL

Chapter 2 Instruction description

ASL Reg1, Reg2, Reg3

Operation If (Regl & 0x0000001F) is not "0"

(Reg2 << (Regl & 0x0000001F)) -> Reg3
If (Regl & 0x0000001F) is "0"

PC + Code Size -> PC

The contents of Reg 2 are arithmetically shifted to the left by the number of bits specified by
the lower 5 bits of Regl, and the result is written into Reg 3.

When the contents of the lower 5 bits in Reg 1 are 0, shift operation is not performed.

Only the lower 5 bits of Regl are effective and the upper bits are ignored.

"0" is input to the LSB side.

Rm & 0x0000001F Rm & 0x0000001F
Rn before execution
Rd after execution 00...00
MSB LSB
Assembler mnemonic Note VICIN |Z Size
H H nAan K?
asl Rm, Rn, Rd The contents of the lower 5 bits in Rm are other than "0 21?2 1A A 4
The contents of the lower 5 bits in Rm are "0" 71?2 A A

Flag change

When (Regl & 0x0000001F) is not "0"
VF: Undefined
CF: Undefined
NF: "1" when bit 31 of the operation result is "1", and "0" in all other cases.
ZF: "1" when the operation result is "0", and "0" in all other cases.
When (Regl & 0x0000001F) is "0"
VF: Undefined
CF: Undefined
NF: "1" when bit 31 of the register (Reg2) is "1", and "0" in all other cases.
ZF: "1" when the register (Reg2) is "0", and "0" in all other cases.

ASL 115

Chapter 2 Instruction description

ASL imm,

Reg

Operation | If (imm & 0x0000001F) is not "0"

(Reg << (imm & 0x0000001F)) -> Reg
If (imm & 0x0000001F) is "0"

PC + Code Size -> PC

imm & 0x0000001F

lower 5 bits of imm, and the result is written into Reg 3.

When the imm lower 5 bits are 0, shift operation is not performed.
Only the imm lower 5 bits are effective and the upper bits are ignored.
"0" is input to the LSB side.

imm & 0x0000001F

The contents of Reg are arithmetically shifted to the left by the number of bits specified by the

Rn before
execution
Rn after I I
) 00...00
execution
MSB LSB C flag
Assembler mnemonic Note VICIN |Z Size
. When the imm lower 5 bits are not "0" 21?7 |A[A| 3
asl imm8, Dn
When the imm lower 5 bits are "0" 21?2 1A]A
] When the imm lower 5 bits are not "0" 71?2(AlA| 4
asl imm8, Rn
When the imm lower 5 bits are "0" 212 1A]A
When the imm lower 5 bits are not "0" 212 1A A 6
asl imm24, Rn - -
When the imm lower 5 bits are "0" 2121 A1A
When the imm lower 5 bits are not "0" 21?2 1AA 7
asl imm32, Rn =
When the imm lower 5 bits are "0" 21?2 |1A|A

Flag change

VF: Undefined
CF: Undefined

VF: Undefined
CF: Undefined

When (imm & 0x0000001F) is not "0"

NF: "1" when bit 31 of the operation result is "1", and "0" in all other cases.
ZF: "1" when the operation result is "0", and "0" in all other cases.
When (imm & 0x0000001F) is "0"

NF: "1" when bit 31 of the register (Reg) is "1", and "0" in all other cases.
ZF: "1" when the register (Reg) is "0", and "0" in all other cases.

116 AsL

Chapter 2 Instruction description

ASLZ 2-bit arithmetic shift left

ASL2 Reg
Operation Reg << 2 -> Reg
The contents of Reg are arithmetically shifted to the left by only 2 bits, and the result is written
into Reg .
2 bit 2 bit
0i0
MSB LSB
Assembler mnemonic Note VICI|N|Z| Size
asl2 Dn 2120AlA
asl2 Rn 71?21A1A 3
Flag change
VF : Undefined.
CF : Undefined.
NF : "1" when the bit 31 of the operation result is "1"; "0" in all other cases.
ZF : "1" when the operation result is "0", "0" in all other cases.

AsL2 117

Chapter 2 Instruction description

R OR 1-bit rotate right

ROR Reg
Operation | ppqw ¢ | Reg[31:0] } -> {Reg[31:0] , EPSW.C}
Reg and the C flag are linked and rotated 1 bit to the right, and the result is written into Reg.
C flag previously set reflects to MSB.
MSB LSB Cflag
Assembler mnemonic Note VICI|N|Z| Size
ror Dn 0 |[AJA]A 2
ror Rn 0 [A[A|A 3
Flag change
VF : Always 0.
CF : Reflects the value of the bit shifted out by the operation
NF : 1 when bit 31 of the operation result is 1; 0 in all other cases
ZF : 1 when the operation result is 0; 0 in all other cases

118 ROR

Chapter 2 Instruction description

R OL 1-bit rotate left

ROL Reg
Operation | ' ¢0131:0], EPSW.C} -> { EPSW.C , Reg[31:0]}
Reg and the C flag are linked and rotated 1 bit to the left, and the result is written into Reg.
C flag previously set reflects to LSB.
Cflag MSB LSB
Assembler mnemonic Note VICI|N|Z| Size
rol Dn 0 |AJA]A 2
rol Rn 0 [A[A|A 3
Flag change
VF : Always 0.
CF : Reflects the value of the bit shifted out by the operation
NF : 1 when bit 31 of the operation result is 1; 0 in all other cases
ZF : 1 when the operation result is 0; 0 in all other cases

ROL 119

Chapter 2 Instruction description

BCC Conditional branch

Bcc (d8, PC)

Operation

When branch is taken,

When branch is not taken,

The next instruction is executed.

PC (current instruction address) + (sign_ext) d8 -> nPC (next instruction PC)

PC (current instruction address) + CodeSize -> nPC (next instruction PC)

8-bit displacement (d8) is sign-extended and added to the PC, and the result is written into the PC.
Even if the addition result overflows, this overflow is ignored and the result is written into the PC.

Assembler mnemonic Note Size
beq label z Branch when Z =1 or Z flag set 2
bne label ~Z Branch when Z = 1 or Z flag cleared 2
bgt label ~(Z | (N"*V)) Branch when < (signed) 2
bge label ~(N*V) Branch when < (signed) 2
ble label Z|(NAV) Branch when > (signed) 2
blt label NAV Branch when > (signed) 2
bhi label ~(C|2) Branch when < (unsigned) 2
bcc label ~C Branch when <or C flag cleared 2

(unsigned)
blsq label C|z Branch when > (unsigned) 2
bcs label C Branch when > or C flag set 2
(unsigned)
bvc label ~V Branch when V flag cleared 3
bvs label Y Branch when V flag set 3
bnc label ~N Branch when N flag cleared 3
bns label N Branch when N flag set 3
bra label None Unconditional branch 2

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

120

BCC

Chapter 2 Instruction description

L cc Loop-only conditional branch

Lcc

Operation

When branch is taken
LAR - 4 -> nPC (next instruction PC)

The instruction loaded from the loop instruction register (LIR) is executed and instruction fetch
starts for the address loaded to the loop address register (LAR).

At the same time, 4 is subtracted from the loop address register (LAR) and the result is written into

When branch is not taken

The next instruction is executed.

the PC. When Lcc is not coordinated with SETLB, execution cannot be assured.

PC (current instruction address) + 1 -> nPC (next instruction PC)

the PC. Even if the subtract result overflows, this overflow is ignored and the result is written into

This is used with SETLB in order to speed up the loop executionl, and performs conditional branch
to the top of the loop set by SETLB.

Assembler mnemonic Note Z | Size
leq label 4 Branch when Z =1 or Z flag set - 1
Ine label ~Z Branch when Z = 1 or Z flag cleared - 1
Igt label ~(Z | (N*V)) Branch when < (signed) - 1
Ige label ~(N*V) Branch when < (signed) - 1
lle label Z|(N2V) Branch when > (signed) - 1
It label NAV Branch when > (signed) - 1
lhi label ~(C|2) Branch when < (unsigned) - 1
lcc label ~C Branch when <or C flag cleared - 1

(unsigned)
lls label Cl|z Branch when > (unsigned) - 1
Ics label Cc Branch when > or C flag set - 1
(unsigned)
Ira label None Unconditional flag - 1

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

Lce 121

c
2
e
©
S
S
R
7]
=

Chapter 2 Instruction description

SETLB ...

SETLB

Operation mem32(PC+1) -> LIR,
PC +5->LAR

The 4-byte instruction string and Sth-byte address following to SETLB are stored to LIR and
LAR respectively.

SETLB is used together with Lcc in order to speed up the loop (the inner most loop) execu-
tion. The top of the loop is set by SETLB just before the loop entrance.

Assembler mnemonic Note VICI|IN|Z| Size

setlb - =-1-1- 1

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

G When the instruction row subsequent to the SETLB instruction is as follows:
H SETLB

o0 w>

:A,B,C,D are 1-byte instructions.

These are stored in the LIR as shown below.

LIR[31] [0]
WhenlAR=4n | D [C [B | A |

WhenLAR=4n+1 | C | B | A | D |

WhenLAR=4n+2 | B | A [D | C |

WhenlAR=4n+3 | A [D | ¢ [B |

122 SETLB

Chapter 2 Instruction description

Unconditional branch

JMP (An)

Operation An ->nPC (next instruction PC)
This stores the contents of the An register in PC.
Assembler mnemonic Note VICI|IN|Z| Size
jmp (An) -|-|-]-] 2

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

JMP (d16, PC)

Operation When the displacement from PC to label can be represented within 16 bits,
PC (current instruction address) + ((sign-extended) d16) -> nPC (next instruction PC)
This sign-extends the 16-bit displacement (d16) and adds it to PC, and stores the result in PC.
Even if the additon result overflows, the overflow is ignored and the result is stored in PC.
Assembler mnemonic Branch condition VICIN|Z]| Size
jmp label When the displacement from PC to label can be repre- | — | — | — | — 3
sented within 16 bits

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

MP 123

Chapter 2 Instruction description

JMP (d32, PC)

Operation When the displacement from PC to label can be represented within 32 bits,

PC (current instruction address) + ((sign-extended) d32) -> nPC (next instruction PC)
This sign-extends the 32-bit displacement (d32) and adds it to PC, and stores the result in PC.

Even if the additon result overflows, the overflow is ignored and the result is stored in PC.

Assembler mnemonic Branch condition VIC|IN|Z]| Size

jmp label When the displacement from PC to label can be repre- | — | — | — | — 5
sented within 32 bits

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

124 mp

Chapter 2 Instruction description

CALL

CALL (d16, PC), regs, imm8

Operation PC (current instruction address) + (sign-ext) d16 -> nPC (next instruction PC)
PC (current instruction address) + CodeSize -> mem32(SP)
PC (current instruction address) + CodeSize -> MDR
Multiple registers specified by regs -> Lower address memory following (SP - 4)
SP - (zero-ext) imm8 -> SP
This instruction branches to the specified address after saving PC and the multiple registers to
the stack and allocating the stack area. d16 is sign-extended and added to the PC, and the
result is written into the PC. Even if the addition result overflows, this overflow is ignored
and the result is written into the PC. The multiple registers to be saved are specified by regs,
and the area to be allocated (number of bytes) by imm8 (zero-extended). (See MOVM for a
detailed description of regs.)
Address low

CALL is used together with RET or RETF in order to SP after execution —| Stack area
save and restore registers and allocate and deallocate reserved in imms
the stack area quickly during subroutine call.
The stack frame status after executing the CALL in- imm8
struction is shown below. Multiple registers

specified by regs

SP before execution— PC
Address high
Assembler mnemonic Note VIC|IN|Z]| Size
call label, regs, imm8 = e 2
Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

G The three operands of d16, regs and immS§ are used for the bit assignment.Normally, the

= multiple registers to be saved and the amount of area to be allocated are not specified
(regs, imm3) directly by the assembler. Instead, these items are specified indirectly with a
pseudo instruction in the callee and ultimately resolved by the linker. For details, refer to
MN10300-series cross assembler user’s manual.

G When the memory address (SP) is not a multiple of 4, a system exception (address mis-
alignment exception) occurs.

CALL 125

Chapter 2 Instruction description

CALL (d32, PC), regs, imm8
Operation PC (current instruction address) + (sign-ext) d32 -> nPC (next instruction PC)
PC (current instruction address) + CodeSize -> mem32(SP)
PC (current instruction address) + CodeSize -> MDR
Multiple registers specified by regs -> Lower address memory following (SP - 4)
SP - (zero-ext) imm§ -> SP
This instruction branches to the specified address after saving PC and the multiple registers to
the stack and allocating the stack area. d32 is sign-extended and added to the PC, and the
result is written into the PC. Even if the addition result overflows, this overflow is ignored
and the result is written into the PC. The multiple registers to be saved are specified by regs,
and the area to be allocated (number of bytes) by imm8 (zero-extended). (See MOVM for a
detailed description of regs.)
Address low
CALL is used together with RET or RETF in order to gp sfter execution —>
save and restore registers and allocate and deallocate
. . i Stack area
the stack area quickly during subroutine call. reserved in
The stack frame status after executing the CALL in- imm8 imms
struction is shown below.
Multple registers
specified by regs
SP before execution —> PC
Address high
Assembler mnemonic Note VICI|IN|Z| Size
call label, regs, imm8 N I 5
Flag change
VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.
G The three operands of d16, regs and imm8 are used for the bit assignment. Normally, the
= multiple registers to be saved and the amount of area to be allocated are not specified

(regs, imm38) directly by the assembler. Instead, these items are specified indirectly with a

pseudo instruction in the callee and ultimately resolved by the linker. For details, refer to

MN10300-series cross assembler user’s manual.

G When the memory address (SP) is not a multiple of 4, a system exception (address mis-

alignment exception) occurs.

126 cCALL

Chapter 2 Instruction description

CALLS

CALLS (An)

Operation An -> nPC (next instruction PC)
PC (current instruction address) + CodeSize -> mem32(SP)
PC (current instruction address) + CodeSize -> MDR

This instruction branches to the specified address after saving the return address (PC (current

instruction address) + CodeSize) to the stack.
CALLS is used together with RETS in order to maintain compatibility in the case of registers

to be saved and the stack area to be allocated are unclear.

Assembler mnemonic Note VICIN|Z]| Size

calls (An) ===
Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

CALLS 127

Chapter 2 Instruction description

CALLS (d16, PC)

Operation

PC (current instruction address) + (sign-ext) d16 -> nPC (next instruction PC)
PC (current instruction address) + CodeSize -> mem32(SP)
PC (current instruction address) + CodeSize -> MDR

This instruction branches to the specified address after saving the return address (PC (current
instruction address) + CodeSize) to the stack.

d16 is sign-extended and added to the PC(current instruction address), and the result is writ-
ten into the nPC (next instruction PC).

Even if the addition result overflows, this overflow is ignored and the result is written into the
nPC (next instruction PC).

CALLS is used together with RETS in order to maintain compatibility in the case of registers

to be saved and the stack area to be allocated are unclear.

Assembler mnemonic Note VIC|N|Z

Size

calls label

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

CALLS (d32, PC)

Operation

PC (current instruction address) + (sign-ext) d32 ->nPC (next instruction PC)
PC (current instruction address) + CodeSize -> mem32(SP)
PC (current instruction address) + CodeSize -> MDR

This instruction branches to the specified address after saving the return address (PC (current
instruction address) + CodeSize) to the stack.

d32 is sign-extended and added to the PC(current instruction address), and the result is writ-
ten into the nPC (next instruction PC).

Even if the addition result overflows, this overflow is ignored and the result is written into the
nPC (next instruction PC).

CALLS is used together with RETS in order to maintain compatibility in the case of registers

to be saved and the stack area to be allocated are unclear.

Assembler mnemonic Note VIC|N|Z

Size

calls label

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

128 CALLS

Chapter 2 Instruction description

RE T Subroutine call

RET regs, imm8

Operation mem32(SP + (zero-ext) imm8) -> nPC (next instruction PC)

Lower address memory following mem32(SP + (zero-ext) imm8 - 4)

-> Multiple registers specified by regs
SP + (zero-ext) imm8 -> SP
This instruction branches to the return address stored in the stack after restoring the saved
multiple registers from the stack and deallocating the stack area.
The multiple registers to be restored are specified by regs, and the area to be deallocated (num-
ber of bytes) are specified by imm8 (zero-extended).
(Refer to MOVM for a detailed description of regs.)
RET is used together with CALL to save and restore registers and allocate and deallocate the
stack area quickly during returning from subroutine.
When a subroutine doesn’t update MDR, RETF makes returning operation from the subrou-

tine faster.

Assembler mnemonic VIC|IN|Z]| Size
ret |- == 3

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

The two operands of regs and imm8 are used for the bit assignment. Normally, the multiple
G registers to be restored and the amount of area to be deallocated are not specified (regs, imm8)
= directly by the assembler. Instead, these items are specified indirectly with a pseudo instruc-
tion in the callee and ultimately resolved by the linker. For details, refer to MN103-series

cross assembler user's manual.

G When the Mem address (SP) is not a multiple of 4, system exception (Address misalignment
g exception) occurs.

RET 129

Chapter 2 Instruction description

RE TF Return from subroutine

RETF
Operation MDR -> nPC (next instruction PC)
Lower address memory following mem32(SP + (zero-ext) imm8 - 4) -> Multiple registers
specified by regs
SP + (zero-ext) imm8 -> SP
This instruction branches to the return address stored in MDR after restoring the saved mul-
tiple registers to the stack and deallocating the stack area.
The multiple registers to be restored are specified by regs, and the area to be deallocated (num-
ber of bytes) are specified by imm8 (zero-extended). (Refer to MOVM for a detailed descrip-
tion of regs.)
RETF is used together with CALL in order to save and restore registers and allocate and
deallocate the stack area quickly during returning from subroutine.
When a subroutine doesn’t update MDR, return operation from the subroutine cannot be as-
sured (use RET).
Assembler mnemonic VIC|IN|Z]| Size
retf o Bl e 3
Flag change

VF: This is not changed.

CF: This is not changed.

NF: This is not changed.

ZF: This is not changed.

The two operands of regs and imm8 are used for the bit assignment. Normally, the multiple

registers to be restored and the amount of area to be deallocated are not specified (regs, imm8)

directly by the assembler. Instead, these items are specified indirectly with a pseudo instruc-

tion in the callee and ultimately resolved by the linker. For details, refer to MN103-series

cross assembler user's manual.

130 RETF

Chapter 2 Instruction description

RE].S Return from subroutine

RETS

Operation mem32(SP) -> nPC (next instruction PC)

This branches to the return address stored in the stack.
RETS is used together with CALLS. This is also used in order to maintain compatibility (used

in RTS).

Assembler mnemonic Note VICIN|Z]| Size

rets

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

RETS 131

Chapter 2 Instruction description

R H Return from interrupt

RTI (Privileged instruction)

Operation mem32(SP) -> EPSW

SP + 8 -> SP

mem32(SP + 4) -> nPC (next instruction PC)

This instruction returns from the interrupt, and branches to the return address stored in the

stack after restoring the EPSW contained in the stack.

Assembler mnemonic Note Size
rti 2
Flag change
VF: The V flag of the saved EPSW.V
CF: The C flag of the saved EPSW.C
NF: The N flag of the saved EPSW.N
ZF: The Z flag of the saved EPSW.Z
G Interrupt control register TBR is set to 0x40000000 at reset.
‘ This instruction is a privileged instruction. If this instruction is executed at user level,
= system exception (privileged instruction execution exception) occurs.
G Access to EPSW[31:16] is possible only with EPSW at privilege level. EPSW.ML is set to
z 1 by restoring EPSW, when EPSW.ML=1 before restoring.

132 RTI

Chapter 2 Instruction description

T P Subroutine call to a specified address

TRAP

Operation { TBR[31:24], 0x000010 } -> nPC (next instruction PC)

PC (current instruction address) + CodeSize -> mem32(SP)

This instruction branches to the specified address (Base address set in TBR + 0x10) after

saving the PC of the next instruction to the stack.

Assembler mnemonic Note VICIN|Z]| Size
trap |- =]= 2

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

‘ Interrupt control register TBR is set to 0x40000000 at reset.
‘ The privileged level has no change in this instruction.
G The priviledged level has no change in this instruction. When the priviledged level is
z changed from the user to supervisor levels, refer to SYSCALL.

TRAP 133

Chapter 2 Instruction description

No operation

NOP

Operation| pc 4 CodeSize -> PC

No operations are performed, and then the next instruction is executed.

Assembler mnemonic

Note

Size

nop

Flag change

VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.

134 Nop

Chapter 2 Instruction description

SYSCALL

SYSCALL imm4

Operation ,) .
PC (current instruction address) + CodeSize -> mem32(SP-4)
EPSW -> mem32(SP-8)
SP -8 -> SP
{ TBR[31:24], (0x000300 + imm4 x 8) } -> nPC (next instruction PC)Starts
After nPC (the next instruction address) and EPSW are stored on to stack, it branches to
specified address (Base address set in TBR + 0x300 +imm4 x 8). This instruction is used as
system call (OS and library calling).
Assembler mnemonic Note VICIN|Z]| Size
syscall imm4 o el el 2
Flag change
VF: This is not changed.
CF: This is not changed.
NF: This is not changed.
ZF: This is not changed.
‘ Interrupt control register TBR is set to 0x40000000 at reset.
‘ The level is changed to the supervisor level after executing this instruction.
G Access to EPSW [31:16] is possible only with EPSW at the privileged level.

SYSCALL 135

Chapter 2 Instruction description

I I Debug instruction

Pl

Operation . _ .
PC (current instruction address) + CodeSize -> mem32(SP-4)
EPSW -> mem32(SP-8)
SP-8->SP
{ TBR[31:24], 0x000008 } -> nPC (next instruction PC)
Thisinstruction isreserved by a debugger.
Normally, an unimplemented instruction exception occurs when this
instruction is executed
Assembler mnemonic Note V|C|[N|Z| Sz
pi el B B 1
Flag change
VF: Thisis not changed.
CF: Thisis not changed.
NF: Thisisnot changed.
ZF: Thisisnot changed.
‘ Interrupt control register TBR is set to 0x40000000 at reset.

Thelevel is changed to the supervisor level after executing this instruction.

Bngaq

=
(%]
—
=
=
o
=2
o
=

Accessto EPSW [31:16] is possible only with EPSW at the privileged level.

136 ~

Chapter 2 Instruction description

DMULH Signed dual multiplication

operation

DMULH Rm, Rn

Operation
(sign_ext)Rm[31:16] * (sign_ext)Rn[31:16] -> MDRQ
(sign_ext)Rm[15:0] * (sign_ext)Rn[15:0] -> Rn
This instruction multiplies the upper 16 bits of Rm (signed) by the upper 16 bits of Rn (signed),
and the lower 16 bits of Rm(signed) by the lower 16bits of Rn (signed), and stores the result (32
bits) of multiplication of the upper 16 bits into MDRQ and the result (32 bits) of multiplication of
the lower 16 bits into Rn.
Assembler mnemonic Note V|C [N |z | Size
dmulh Rm, Rn [U I 3

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

DMULH Rm, Rn, Rd1, Rd2

Operation

(sign_ext)Rm[31:16] * (sign_ext)Rn[31:16] -> Rd1

(sign_ext)Rm[15:0] * (sign_ext)Rn[15:0] -> Rd2
This instruction multiplies the upper 16 bits of Rm (signed) by the upper 16 bits of Rn (signed),
and the lower 16 bits of Rm(signed) by the lower 16bits of Rn (signed), and stores the result (32
bits) of multiplication of the upper 16 bits into Rd1 and the result (32 bits) of multiplication of the
lower 16 bits into Rd2.

Assembler mnemonic Note V|C [N |z | Size
dmulh Rm, Rn, Rd1, Rd2 Rd1=Rd2 can not be specified. N I R 4

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

G When Rd1=Rd2 is specified, the operation result is undefined.

DMULH 137

c
<)
°
=
=1
=
1]
=

(=
S5
2%
Qh
QO
x o
w o

Chapter 2 Instruction description

DMULH imm, Rn

Operation

(sign_ext)imm[31:16] * (sign_ext)Rn[31:16] -> MDRQ

(sign_ext)imm[15:0] * (sign_ext)Rn[15:0] -> Rn
This instruction multiplies the upper 16 bits of imm (signed) by the upper 16 bits of Rn (signed),
and the lower 16 bits of imm(signed) by the lower 16bits of Rn (signed), and stores the result (32
bits) of multiplication of the upper 16 bits into MDRQ and the result (32 bits) of multiplication of
the lower 16 bits into Rn.

Assembler mnemonic Note V|C [N |z | Size

- | = 7

dmulh imm32, Rn — | =

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

138 DMULH

operation

Chapter 2 Instruction description

DMULHU Unsigned dual multiplication

DMULHU Rm, Rn

Operation
(zero_ext)Rm[31:16] * (zero_ext)Rn[31:16] -> MDRQ
(zero_ext)Rm[15:0] * (zero_ext)Rn[15:0] -> Rn
This instruction multiplies the upper 16 bits of Rm (unsigned) by the upper 16 bits of Rn (un-
signed), and the lower 16 bits of Rm(unsigned) by the lower 16bits of Rn (unsigned), and stores
the result (32 bits) of multiplication of the upper 16 bits into MDRQ and the result (32 bits) of
multiplication of the lower 16 bits into Rn.
Assembler mnemonic Note V|C [N |z | Size
dmulhu Rm, Rn [U I 3

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

DMULHU Rm, Rn, Rd1, Rd2

Operation
(zero_ext)Rm[31:16] * (zero_ext)Rn[31:16] -> Rdl

(zero_ext)Rm[15:0] * (zero_ext)Rn[15:0] -> Rd2

multiplication of the lower 16 bits into Rd2.

This instruction multiplies the upper 16 bits of Rm (unsigned) by the upper 16 bits of Rn (un-
signed), and the lower 16 bits of Rm(unsigned) by the lower 16bits of Rn (unsigned), and stores
the result (32 bits) of multiplication of the upper 16 bits into Rd1 and the result (32 bits) of

Assembler mnemonic Note

\Y

C

N [Z | Size

dmulhu Rm, Rn, Rd1, Rd2 Rd1=Rd2 can not be specified.

— -] 4

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

G When Rd1=Rd2 is specified, the operation result is undefined.

DMULHU 139

Chapter 2 Instruction description

DMULHU imm, Rn

Operation

(zero_ext)imm[31:16] * (zero_ext)Rn[31:16] -> MDRQ
(zero_ext)imm[15:0] * (zero_ext)Rn[15:0] -> Rn

multiplication of the lower 16 bits into Rn.

This instruction multiplies the upper 16 bits of imm (unsigned) by the upper 16 bits of Rn (un-
signed), and the lower 16 bits of imm(unsigned) by the lower 16bits of Rn (unsigned), and stores
the result (32 bits) of multiplication of the upper 16 bits into MDRQ and the result (32 bits) of

ZF

CF :
NF :
: This is not changed.

This is not changed.
This is not changed.

Assembler mnemonic Note VIC |N |z | Size
dmulhu imm32, Rn S R S 7
Flag change
VF : This is not changed.

140 DMULHU

Chapter 2 Instruction description

DM4 CH Signed dual multiply-and-

accumulate operation

DMACH Rm, Rn

Operation

(sign_ext)Rm[31:16] * (sign_ext)Rn[31:16]
+ (sign_ext)Rm[15:0] * (sign_ext)Rn[15:0] + MCRL -> MCRL

This instruction multiplies the upper 16 bits of Rm (signed) by the upper 16 bits of Rn (signed),
and the lower 16 bits of Rm (signed) by the lower 16bits of Rn (signed). And then, it adds the
result (32 bits) of multiplication of the upper 16 bits, the result (32 bits) of the lower 16 bits and
the cumulative sum (32 bits) which is stored in MCRL, and stores the operation result into MCRL.
When that operation result overflows, MCVF is set to 1.

Assembler mnemonic Note VIC [N |Z| Size

dmach Rm, Rn 1]

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

DMACH Rm, Rn, Rd

Operation

(sign_ext)Rm[31:16] * (sign_ext)Rn[31:16]
+(sign_ext)Rm[15:0] * (sign_ext)Rn[15:0] & 0x0000FFFF)-> Rd

This instruction multiplies the upper 16bits of Rm (signed) by the upper 16 bits of Rn (signed),
and the lower 16 bits of Rm (signed) by the lower 16bits of Rn (signed). And then, it adds the
result (32 bits) of multiplication of the upper 16 bits, the result (32 bits) of the lower 16 bits and
the cumulative sum (32 bits) which is stored in Rd, and the operation result into Rd.

When that operation result overflows , MCVF is set to 1.

Assembler mnemonic Note V|C [N |z | Size
dmach Rm, Rn, Rd Al =-|-=-1|-= 4

Flag change

VF : If the cumulative sum data overflows out of 32 bits when adding the product and the cumulative sum,
this is set to 1. In all other cases, it keeps the previous condition.

CF : This is not changed.

NF : This is not changed.

ZF : This is not changed.

DMACH 141

Chapter 2 Instruction description

DMACH imm, Rn

Operation
(sign_ext)imm32[31:16] * (sign_ext)Rn[31:16] + (sign_ext)imm32[15:0] *

(sign_ext)Rn[15:0] + MCRL -> MCRL

This instruction multiplies the upper 16bits of imm(signed) by the upper 16 bits of Rn (signed),
and the lower 16 bits of imm (signed) by the lower 16bits of Rn (signed). And then, it adds the
result (32 bits) of multiplication of the upper 16 bits, the result (32 bits) of the lower 16 bits and
the cumulative sum (32 bits) which is stored in MCRL, and the operation result into MCRL.
When that operation result overflows , MCVF is set to 1.

Assembler mnemonic Note VIC [N |z | Size

dmach imm32, Rn N R R

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

142 DMACH

Chapter 2 Instruction description

DMACHU ... o,

and-accumulate operation

DMACHU Rm, Rn

Operation

(zero_ext)Rm[31:16] * (zero_ext)Rn[31:16]
+ (zero_ext)Rm[15:0] * (zero_ext)Rn[15:0] + MCRL -> MCRL

This instruction multiplies the upper 16 bits of Rm (unsigned) by the upper 16 bits of Rn (un-
signed), and the lower 16 bits of Rm (unsigned) by the lower 16bits of Rn (unsigned). And then, it
adds the result (32 bits) of multiplication of the upper 16 bits, the result (32 bits) of the lower 16
bits and the cumulative sum (32 bits) which is stored in MCRL, and stores the operation result
into MCRL.

When that operation result overflows, MCVF is set to 1.

Assembler mnemonic Note V|C IN |z | Size

dmachu Rm, Rn [R B

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

DMACHU Rm, Rn, Rd

Operation

(zero_ext)Rm[31:16] * (zero_ext)Rn[31:16]
+(zero_ext)Rm[15:0] * (zero_ext)Rn[15:0] + Rd -> Rd

This instruction multiplies the upper 16bits of Rm (unsigned) by the upper 16 bits of Rn (un-
signed), and the lower 16 bits of Rm (unsigned) by the lower 16bits of Rn (unsigned). And then, it
adds the result (32 bits) of multiplication of the upper 16 bits, the result (32 bits) of the lower 16
bits and the cumulative sum (32 bits) which is stored in Rd, and the operation result into Rd.

When that operation result overflows , MCVF is set to 1.

Assembler mnemonic Note V|C [N |z | Size

dmachu Rm, Rn, Rd Al === 4

Flag change

VF : If the cumulative sum data overflows out of 32 bits when adding the product and the cumulative sum,
this is set to 1. In all other cases, it keeps the previous condition.

CF : This is not changed.

NF : This is not changed.

ZF : This is not changed.

DMACHU 143

Chapter 2 Instruction description

DMACHU imm, Rn

Operation

(zero_ext)imm32[31:16] * (zero_ext)Rn[31:16]
+ (zero_ext)imm32[15:0] * (zero_ext)Rn[15:0] + MCRL -> MCRL

This instruction multiplies the upper 16bits of imm(unsigned) by the upper 16 bits of Rn (un-
signed), and the lower 16 bits of imm (unsigned) by the lower 16bits of Rn (unsigned). And then,
it adds the result (32 bits) of multiplication of the upper 16 bits, the result (32 bits) of the lower
16 bits and the cumulative sum (32 bits) which is stored in MCRL, and the operation result into

MCRL.
When that operation result overflows , MCVF is set to 1.

Assembler mnemonic Note VIC [N |z | Size

dmachu imm32, Rn

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

144 DMACHU

Signed multiply-and-accumulate

operation

Chapter 2 Instruction description

MAC Rm, Rn

Operation

(Rm * Rn) + {MCRH , MCRL} -> {MCRH , MCRL}

This instruction multiplies the contents of Rm (signed) and Rn (signed) , and adds the result (64
bits) to the cumulative sum (64 bits) of which the upper 32 bits and the lower 32 bits are stored
in MCRH and MCRL respectively. And then the upper 32 bits of the operation result are stored
into MCRH, and the lower 32 bits of that result are stored into MCRL.

If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative

sum, MCVF is set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic

Note

V

7 Size

mac Rm, Rn

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

MAC Rm, Rn, Rd1, Rd2

Operation

(Rm * Rn) + {Rdl , Rd2} -> {Rdl , Rd2}

This instruction multiplies the contents of Rm (signed) and Rn (signed) , and adds the result (64
bits) to the cumulative sum (64 bits) of which the upper 32 bits and the lower 32 bits are stored in
Rd1 and Rd2 respectively. And then the upper 32 bits of the operation result are stored into Rdl1,
and the lower 32 bits of that result are stored into Rd2.
If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative

sum, MCVF is set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic

Note

Z Size

mac Rm, Rn, Rd1, Rd2

Rd1=Rd2 can not be specified

Flag change

this is set to 1.

CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

VF : If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative sum,

MAC 145

Chapter 2 Instruction description

MAC imm, Rn

Operation
((sign_ext)imm * Rn) + {MCRH , MCRL} -> {MCRH , MCRL}
This instruction multiplies the contents of the 32 bit-data which is obtained by sign-extending
imm by the contents of Rn (signed), and adds the result to the cumulative sum (64 bits) of
which the upper 32 bits and the lower 32 bits of the result are stored into MCRH and MCRL
respectively. And then, the upper 32 bits of the operation result are stored into MCRH, and the
lower 32 bits of that result are stored into MCRL.
If the cumulative sum data overflows out of 64 bits when adding the product and the cumula-
tive sum, MCVF is set to 1. In all other cases, it keeps the previous condition.
Assembler mnemonic Note VIC|N|z| Size
mac imm8, Rn imma8 is sign-extended. -l -] -] - 4
mac imm24, Rn imm24 is sign-extended. N 6
mac imm32, Rn e 7

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

146 MAcC

Chapter 2 Instruction description

M4CU Unsigned multiply-and-accumu-

late operation

MACU Rm, Rn

Operation

(Rm * Rn) + {MCRH , MCRL} -> {MCRH , MCRL}

This instruction multiplies the contents of Rm (unsigned) and Rn (unsigned) , and adds the
result (64 bits) to the cumulative sum (64 bits) of which the upper 32 bits and the lower 32 bits
are stored in MCRH and MCRL respectively. And then the upper 32 bits of the operation result
are stored into MCRH, and the lower 32 bits of that result are stored into MCRL.

If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative

sum, MCVF is set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic Note VI|C [N |Z| Size

macu Rm, Rn [I N

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

MACU Rm, Rn, Rd1, Rd2

Operation

(Rm * Rn) + {Rdl , Rd2} -> {Rdl , Rd2}

This instruction multiplies the contents of Rm (unsigned) and Rn (unsigned) , and adds the result
(64 bits) to the cumulative sum (64 bits) of which the upper 32 bits and the lower 32 bits are
stored in Rd1 and Rd2 respectively. And then, the upper 32 bits of the operation result are stored
into Rd1, and the lower 32 bits of that result are stored into Rd2.

If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative

sum, MCVF is set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic Note VI|C [N |z | Size
macu Rm, Rn, Rd1, Rd2 Rd1=Rd2 can not be specified Al-|-|-| 4

Flag change

VF : If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative sum,
this is set to 1.

CF : This is not changed.

NF : This is not changed.

ZF : This is not changed.

G When Rd1=Rad2 is specified, the operation result is undefined.

MACU 147

Chapter 2 Instruction description

MACU imm, Rn

Operation
((zero_ext)imm * Rn) + {MCRH , MCRL} -> {MCRH , MCRL}
This instruction multiplies the contents of the 32 bit-data which is obtained by zero-ex-
tending imm by the contents of Rn (unsigned), and adds the result to the cumulative sum
(64 bits) of which the upper 32 bits and the lower 32 bits of the result are stored into
MCRH and MCRL respectively. And then, the upper 32 bits of the operation result are
stored into MCRH, and the lower 32 bits of that result are stored into MCRL.
If the cumulative sum data overflows out of 64 bits when adding the product and the
cumulative sum, MCVF is set to 1. In all other cases, it keeps the previous condition.
Assembler mnemonic Note VIC|N|z| Size
macu imm8, Rn imm8 is sign-extended. -l - -] - 4
macu imm24, Rn imm24 is sign-extended. Tl 6
macu imm32, Rn i N I 7
Flag change
VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

148

MACU

Chapter 2 Instruction description

M4 CH Signed half-word multiply-and-ac-

cumulate operation

MACH Rm, Rn

Operation

((sign_ext)Rm[15:0] * (sign_ext)Rn[15:0]) + {MCRH , MCRL} -> {MCRH, MCRL}

This instruction multiplies the 32-bit data which is obtained by sign-extending the lower16 bits of
Rm by the 32-bit data which is obtained by sign-extending the lower 16 bits of Rn, and adds that
result (64 bits) to the cumulative sum (64 bits) of which the upper 32 bits and the lower 32 bits are
stored in MCRH and MCRL respectively. The upper 32 bits of operation result (64 bits) are stored
into MCRH and the lower 32 bits are stored into MCRL.

If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative

sum, MCVF are set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic Note VI C|NI|Z| Size

mach Rm, Rn

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

MACH Rm, Rn, Rd1, Rd2

Operation
((sign_ext)Rm[15:0] * (sign_ext)Rn[15:0]) + {Rd1l, Rd2} -> {Rdl , Rd2}
This instruction multiplies the 32-bit data which is obtained by sign-extending the lower16 bits of
Rm and the 32-bit data which is obtained by sign-extending the lower 16 bits of Rn, and adds that
result (64 bits) to the cumulative sum (64 bits) of which the upper 32 bits and the lower 32 bits are
stored in Rd1 and Rd2 respectively. The upper 32 bits of operation result (64 bits) are stored into
Rd1 and the lower 32 bits are stored into Rd2.
If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative
sum, MCVF are set to 1. In all other cases, it keeps the previous condition.
Assembler mnemonic Note VICIN|Z| Size
mach Rm, Rn, Rd1, Rd2 Rd1=Rd2 can not be specified Al-|-|-] 4

Flag change

VF : If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative sum,
this is set to 1.

CF : This is not changed.

NF : This is not changed.

ZF : This is not changed.

G When Rd1=Rd2 is specified, the operation result is undefined.

MACH 149

Chapter 2 Instruction description

MACH imm, Rn

Operation

((sign_ext)imm[15:0] * (sign_ext)Rn[15:0]) + {MCRH , MCRL} -> {MCRH , MCRL}

This instruction multiplies the 16-bit data which is obtained by sign-extending imm and
the 32-bit data which is obtained by sign-extending the lower 16 bits of Rn, and adds that
result (64 bits) to the cumulative sum (64 bits) of which the upper 32 bits and the lower
32 bits are stored in MCRH and MCRL respectively. The upper 32 bits of operation result
(64 bits) are stored into MCRH and the lower 32 bits are stored into MCRL.
If the cumulative sum data overflows out of 64 bits when adding the product and the

cumulative sum, MCVF are set to 1. In all other cases, it keeps the previous condition.

mach imm32, Rn

Assembler mnemonic Note VIC|IN|Z| Size
mach imm8, Rn imm8 is sign-extended. -l - -] - 4
mach imm24, Rn - - - - 6

Rl I N 7

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

150 MACH

Chapter 2 Instruction description

M4 CHU Unsigned half-word multiply-

and-accumulate operation

MACHU Rm, Rn

Operation

((zero_ext)Rm[15:0] * (zero_ext)Rn[15:0]) + {MCRH , MCRL} -> {MCRH, MCRL}

This instruction multiplies the 32-bit data which is obtained by zero-extending the lower16 bits of
Rm by the 32-bit data which is obtained by zero-extending the lower 16 bits of Rn, and adds that
result (64 bits) to the cumulative sum (64 bits) of which the upper 32 bits and the lower 32 bits are
stored in MCRH and MCRL respectively. The upper 32 bits of operation result (64 bits) are stored
into MCRH and the lower 32 bits are stored into MCRL.

If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative

sum, MCVF are set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic Note VI C|NI|Z| Size

machu Rm, Rn [I N

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

MACHU Rm, Rn, Rd1, Rd2

Operation

((zero_ext)Rm[15:0] * (zero_ext)Rn[15:0]) + {Rdl, Rd2} -> {Rdl , Rd2}

This instruction multiplies the 32-bit data which is obtained by zero-extending the lower16 bits of
Rm and the 32-bit data which is obtained by zero-extending the lower 16 bits of Rn, and adds that
result (64 bits) to the cumulative sum (64 bits) of which the upper 32 bits and the lower 32 bits are
stored in Rd1 and Rd2 respectively. The upper 32 bits of operation result (64 bits) are stored into
Rd1 and the lower 32 bits are stored into Rd2.

If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative

sum, MCVF are set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic Note VIC|IN|Z| Size

machu Rm, Rn, Rd1, Rd2 Rd1=Rd2 can not be specified Al-|-|-| 4

Flag change

VF : If the cumulative sum data overflows out of 64 bits when adding the product and the cumulative sum,
this is set to 1.

CF : This is not changed.

NF : This is not changed.

ZF : This is not changed.

(

When Rd1=Rd2 is specified, the operation result is undefined.

MACHU 151

Chapter 2 Instruction description

MACHU imm, Rn

Operation
((zero_ext)imm[15:0] * (zero_ext)Rn[15:0]) + {MCRH , MCRL} -> {MCRH , MCRL}
This instruction multiplies the 16-bit data which is obtained by zero-extending imm and
the 32-bit data which is obtained by zero-extending the lower 16 bits of Rn, and adds that
result (64 bits) to the cumulative sum (64 bits) of which the upper 32 bits and the lower
32 bits are stored in MCRH and MCRL respectively. The upper 32 bits of operation result
(64 bits) are stored into MCRH and the lower 32 bits are stored into MCRL.

If the cumulative sum data overflows out of 64 bits when adding the product and the

cumulative sum, MCVF are set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic Note VIC|N|Z

Size

machu imm8, Rn imm8 is sign-extended.

machu imm24, Rn

machu imm32, Rn

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

152 MACHU

Chapter 2 Instruction description

M4 CB Signed byte multiply-and-accu-

mulate operation

MACB Rm, Rn

Operation

(sign_ext)Rm[7:0] * (sign_ext)Rn[7:0]) + MCRL -> MCRL}

This instruction multiplies the 32-bit data which is obtained by sign-extending the lower 8 bits of
Rm by the 32-bit data which is obtained by sign-extending the lower 8 bits of Rn, and adds that
result (32 bits) to the cumulative sum (32 bits) of which the upper 32 bits and the lower 32 bits are
stored in MCRL respectively. The operation result (32 bits) are stored into MCRL and the lower
32 bits are stored into MCRL.

If the cumulative sum data overflows out of 32 bits when adding the product and the cumulative

sum, MCVF are set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic Note V|IC|INI|Z| Size

macb Rm, Rn [N N A

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

MACB Rm, Rn, Rd

Operation

(sign_ext)Rm[7:0] * (sign_ext)Rn[7:0]) + Rd -> Rd

This instruction multiplies the 32-bit data which is obtained by sign-extending the lower 8 bits of
Rm and the 32-bit data which is obtained by sign-extending the lower 8 bits of Rn, and adds that
result (32 bits) to the cumulative sum (32 bits) stored in Rd. The operation result (32 bits) are
stored into Rd.

If the cumulative sum data overflows out of 32 bits when adding the product and the cumulative

sum, MCVF are set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic

Note V|C|IN|Z| Size

macb Rm,

Rn, Rd Rd1=Rd2 can not be specified Al-|-1]-| 4

Flag change

VF : If the cumulative sum data overflows out of 32 bits when adding the product and the cumulative sum,
this is set to 1.

CF : This is not changed.

NF : This is not changed.

ZF : This is not changed.

MACB 153

Chapter 2 Instruction description

MACB imm, Rn

macb imm32, Rn

Operation
((sign_ext)imm[7:0] * (sign_ext)Rn[7:0]) + MCRL -> MCRL
This instruction multiplies the 8-bit data of imm and the 32-bit data which is obtained by
sign-extending the lower 8 bits of Rn, and adds that result (64 bits) to the cumulative sum
(32 bits) of which the upper 32 bits and the lower 32 bits are stored in MCRH and MCRL
respectively. The operation result (32 bits) are stored into MCRL.
If the cumulative sum data overflows out of 32 bits when adding the product and the
cumulative sum, MCVF are set to 1. In all other cases, it keeps the previous condition.
Assembler mnemonic Note VIC|IN|Z| Size
macb imm8, Rn -] 4
macb imm24, Rn i B I 6
S N 7

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

154 MACB

Chapter 2 Instruction description

M4 CB U Unsigned byte-data multiply-

and-accumulate operation

MACBU Rm, Rn

Operation

(zero_ext)Rm[7:0] * (zero_ext)Rn[7:0]) + MCRL -> MCRL}

This instruction multiplies the 32-bit data which is obtained by zero-extending the lower 8 bits of
Rm by the 32-bit data which is obtained by zero-extending the lower 8 bits of Rn, and adds that
result (32 bits) to the cumulative sum (32 bits) stored in MCRL. The operation result (32 bits) are
stored into MCRL.

If the cumulative sum data overflows out of 32 bits when adding the product and the cumulative

sum, MCVF are set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic Note V|IC|INI|Z| Size

macbu Rm, Rn [R B

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

MACBU Rm, Rn, Rd

Operation

((zero_ext)Rm[7:0] * (zero_ext)Rn[7:0]) + Rd -> Rd

This instruction multiplies the 32-bit data which is obtained by zero-extending the lower 8 bits of
Rm and the 32-bit data which is obtained by zero-extending the lower 8 bits of Rn, and adds that
result (32 bits) to the cumulative sum (32 bits) stored in Rd. The operation result (32 bits) are
stored into Rd.

If the cumulative sum data overflows out of 32 bits when adding the product and the cumulative

sum, MCVF are set to 1. In all other cases, it keeps the previous condition.

Assembler mnemonic Note VIC|N|Z| Size

macbu Rm, Rn, Rd Rd1=Rd2 can not be specified Al-|-|-| 4

Flag change

VF : If the cumulative sum data overflows out of 32 bits when adding the product and the cumulative sum,
this is set to 1.

CF : This is not changed.

NF : This is not changed.

ZF : This is not changed.

MACBU 155

Chapter 2 Instruction description

MACBU imm, Rn

macbu imm32, Rn

Operation
((zero_ext)imm[7:0] * (zero_ext)Rn[7:0]) + MCRL -> MCRL
This instruction multiplies the 8-bit data of imm and the 32-bit data which is obtained by
zero-extending the lower 8 bits of Rn, and adds that result (32 bits) to the cumulative sum
(32 bits) are stored in MCRL respectively. The operation result (32 bits) are stored into
MCRL.
If the cumulative sum data overflows out of 32 bits when adding the product and the
cumulative sum, MCVF are set to 1. In all other cases, it keeps the previous condition.
Assembler mnemonic Note VIC|IN|Z| Size
macbu imm8, Rn -] 4
macbu imm24, Rn i B I 6
S N 7

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

156 MACBU

Chapter 2 Instruction description

, , H’ , Data swapping instruction between

the upper 2 bytes and lower 2 bytes

SWHW Rm, Rn

Operation

Rm[31:16] -> Rn[15:0]
Rm[15:0] -> Rn[31:16]

This instruction swaps the contents of the upper 16 bits and lower 16 bits of Rm, and stores the

operation result (32 bits) in Rn.

Assembler mnemonic Note V|C [N |Z| Size

swhw Rm, Rn —

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

SWHW 157

Chapter 2 Instruction description

S , , A I Data swapping instruction between the upper and

lower of the 4-byte data in byte unit

SWAP Rm, Rn

Operation

Rm[31:24] -> Rn[7:0]
Rm[23:16] -> Rn[15:8]
Rm[15:8] -> Rn[23:16]
Rm[7:0] -> Rn[31:24]

This instruction swaps the upper and lower 16 bits of Rm after swapping the upper 8 bits and lower

8 bits both in the upper and lower 16 bits of Rm, and then stores the result in Rn.

Execution example: Before execution Rm=0x12345678 -> After execution Rn=0x78563412

Assembler mnemonic

Note V| C| N|Z| Size

swap Rm, Rn

- |- 3

Flag change

VF :
CF :
NF :
ZF :

This is not changed.
This is not changed.
This is not changed.
This is not changed.

158

SWAP

Chapter 2 Instruction description

W I l i Data swapping instruction between the upper

and lower of the 2-byte data in byte unit

SWAPH Rm, Rn

Operation

Rm[31:24] -> Rn[23:16]

Rm[23:16] -> Rn[31:24]

Rm[15:8] -> Rn[7:0]

Rm[7:0] -> Rn[15:8]

This instruction swaps the upper 8 bits and lower 8 bits both in the upper and lower 16 bits of

Rm, and then stores the result in Rn.

Execution example: Before execution Rm=0x12345678 -> After execution Rn=0x34127856

Assembler mnemonic Note

V|C|N|Z| Size

swaph Rm, Rn

- =] 3

Flag change

VF :
CF :
NF :
ZF :

This is not changed.
This is not changed.
This is not changed.
This is not changed.

SWAPH 159

Chapter 2 Instruction description

SA T 1 6 16-bit saturation operation instruction

SAT16 Rm, Rn

Operation 1) equal or bigger than maximum positive value (0x00007FFFF) for 16-bit signed number,
0x00007FFFF -> Rn
2) equal or smaller than minimum negative value (0xFFFF8000) for 16-bit signed number,
0xFFFF8000 -> Rn
3) other than 1) or 2),
Rm -> Rn
1) equal or bigger than maximum positive value (0x00007FFFF) for 16-bit signed number, the]

maximum positive value (0x00007FFFF) is stored into Rn.
2) equal or smaller than minimum negative value (OxXFFFF8000) for 16-bit signed number, the]
minimum negative value (OxFFFF8000) is stored into Rn.

3) other than 1) or 2), the contents of Rm are stored into Rn.

Assembler mnemonic Note V|IC|I|N|Z| Size
sat16 Rm, Rn 2021A1A 3

Flag change

VF : This is not changed.
CF : This is not changed.
NF : "1" when the MSB of the operation result is "1", "0" in all other cases.

ZF : "1" when the operation result is "0", "0" in all other cases.

160 SATI16

SAT24

Chapter 2 Instruction description

24-bit saturation operation instruction

SAT24 Rm, Rn
Operation 1) equal or bigger than maximum positive value (0x007FFFFFF) for 24-bit signed number,
0x007FFFFFF -> Rn
2) equal or smaller than minimum negative value (0xFF800000) for 24-bit signed number,
0xFF800000 -> Rn
3) other than 1) or 2),
Rm -> Rn
1) equal or bigger than maximum positive value (0xO007FFFFFF) for 16-bit signed number, th¢
maximum positive value (0x007FFFFF) is stored into Rn.
2) equal or smaller than minimum negative value (0xFF800000) for 16-bit signed number, the
minimum negative value (0OxFF800000) is stored into Rn.
3) other than 1) or 2), the contents of Rm are stored into Rn.
Assembler mnemonic Note V|IC|INI|Z| Size
sat2z4 Rm, Rn 2121AlAl 4
Flag change
VF : This is not changed.
CF : This is not changed.
NF : "1" when the MSB of the operation result is "1", "0" in all other cases.
ZF : "1" when the operation result is "0", "0" in all other cases.
SAT24 161

Chapter 2 Instruction description

MCS] E Instruction of the saturation operation

for the multiply-and-accumulate result

MCSTE Rm, Rn

Operation
This instruction sets the value of the multiply-and-accumulate operation overflow, and stores

the result into the V flag. In addition, depending on the value of Rm, the following instructions

are performed.

1) When the set value is 32 (0x00000020)

When the 64-bit result of the multiply-and-accumulate operation that is stored in the mul-
tiply-and-accumulate registers MCRH and MCRL is equal to or greater than the maximum
positive value for a 32-bit signed number (0x000000007FFFFFFF), the maximum positive
value (Ox7fffffff) is stored in Rn.

0x7fffffff-> Rn
If the value stored in the multiply-and-accumulate registers MCRH and MCRL is equal
to or less than the maximum negative value for a 32-bit signed number
(OxfEffffff80000000), the maximum negative value (0x80000000) is stored in Dn.
0x80000000 ->Rn
In all other cases, the lower 31 bits of MCRL are stored in Rn.
MCRL ->Rn

2) When the set value is 16 (0x00000010)

When the 64-bit result of the multiply-and-accumulate operation that is stored in the mul-
tiply-and-accumulate registers MCRH and MCRL is equal to or greater than the maximum
positive value for a 16-bit signed number (0x0000000000007FFF), the maximum positive
value (0x7fff) is stored in Rn.

0x7fff -> Rn

If the value stored in the multiply-and-accumulate registers MCRH and MCRL is equal to
or less than the maximum negative value for a 16-bit signed number (Oxffffffffffff8000),
the maximum negative value (OxFFFF8000) is stored in Rn.

0xffff8000 -> Rn
In all other cases, the lower 31 bits of MCRL are stored in Rn.
MCRL -> Rn

3) When the set value is 8 (0x00000008)

When the 32-bit result of the multiply-and-accumulate operation that is stored in the mul-
tiply-and-accumulate registers MCRH and MCRL is equal to or greater than the maximum
positive value for an 8-bit signed number (0x0000007F), the maximum positive value
(0x0000007f) is stored in Rn.

0x0000007f -> Rn

If the value stored in the multiply-and-accumulate registers MCRH and MCRL is equal to
or less than the maximum negative value for an 8-bit signed number (0xffffff80), the maxi-
mum negative value (Oxffffff80) is stored in Rn.

0xffffff80 -> Rn
In all other cases, the lower 31 bits of MCRL are stored in Rn.
MCRL -> Rn

162 MCSTE

Chapter 2 Instruction description

Operation 4) When the set value is 9(0x00000009),

When the 32-bit result of the multiply-and-accumulate operation that is stored in the multiply-
and-accumulate registers MCRH and MCRL is equal to or greater than the maximum positive
value for a 9-bit signed number (0x000000£f), the maximum positive value (0xff) is stored in Rn.

0xff-> Rn
If the value stored in the lower 31bits of the multiply-and-accumulate register MCRL is equal
to or less than 0, 0(0x00000000) is stored in Rn.
0x00000000 ->Rn
In all other cases, the lower 31 bits of MCRL are stored in Rn.
MCRL ->Rn
4) When the set value is 48 (0x00000030)

When the 64-bit result of the multiply-and-accumulate operation that is stored in the multiply-
and-accumulate registers MCRH and MCRL is equal to or greater than the maximum positive
value for a 48-bit signed number (0x00007 fffffffffff), the bits from 47 to 16 are stored in Rn as
the operation result.

Ox 7fffffff -> Rn

If the value stored in the multiply-and-accumulate registers MCRH and MCRL is equal to or less
than the maximum negative value for a 48-bit signed number (0xffff800000000000), the bits
from 47 to 16 are stored in Rn as the operation result.

0x80000000 -> Rn
In all other cases, the values from the bits 16 to 47 of MCRH and MCRL are stored in Rn.
{MCRH[15:0], MCRL[31:16] -> Rn[31:0]
5) When the set value is other than the above-mentioned values,

Rn is undefined.

Assembler mnemonic Note VI|IC|IN|Z | Size

mcste Rm, Rn

o
o
-~

2
w

When multiply-and-accumulate operation overflow was
not detected (MCVF = 0)

When multiply-and-accumulate operation overflow was 110|212 3
detected (MCVF = 1)
Flag change

When multiply-and-accumulate operation overflow was not detected
VF: This is "0" and indicates that the multiply-and-accumulate operation is valid.
CF: Always “0”
NF: Undefined
ZF: Undefined
When multiply-and-accumulate operation overflow was detected
VF: This is "1" and indicates that the multiply-and-accumulate operation is invalid.
CF: Always “0”
NF: Undefined
ZF: Undefined

MCSTE 163

Chapter 2 Instruction description

MCSTE

imm, Rn

Operation

This instruction sets the value of the multiply-and-accumulate operation overflow, and
stores the result into the V flag. In addition, depending on the value of imm, the following

instructions are performed.

1) When the set value is 32 (0x00000020)

When the 64-bit result of the multiply-and-accumulate operation that is stored in the mul-
tiply-and-accumulate registers MCRH and MCRL is equal to or greater than the maximum
positive value for a 32-bit signed number (0x000000007FFFFFFF), the maximum positive
value (0x7fffffff) is stored in Rn.

Ox 7fffffff-> Rn
If the value stored in the multiply-and-accumulate registers MCRH and MCRL is equal
to or less than the maximum negative value for a 32-bit signed number
(Oxffffffff80000000), the maximum negative value (0x80000000) is stored in Dn.
0x80000000 ->Rn
In all other cases, the lower 31 bits of MCRL are stored in Rn.
MCRL ->Rn

2) When the set value is 16 (0x00000010)

When the 64-bit result of the multiply-and-accumulate operation that is stored in the mul-
tiply-and-accumulate registers MCRH and MCRL is equal to or greater than the maximum
positive value for a 16-bit signed number (0x0000000000007FFF), the maximum positive
value (0x7fff) is stored in Rn.

0x7fff -> Rn

If the value stored in the multiply-and-accumulate registers MCRH and MCRL is equal to
or less than the maximum negative value for a 16-bit signed number (Oxffffffffffff8000),
the maximum negative value (OXFFFF8000) is stored in Rn.

0xffff8000 -> Rn
In all other cases, the lower 31 bits of MCRL are stored in Rn.
MCRL -> Rn

3) When the set value is 8 (0x00000008)

When the 32-bit result of the multiply-and-accumulate operation that is stored in the mul-
tiply-and-accumulate registers MCRH and MCRL is equal to or greater than the maximum
positive value for an 8-bit signed number (0x0000007F), the maximum positive value
(0x0000007f) is stored in Rn.

0x0000007f -> Rn

If the value stored in the multiply-and-accumulate registers MCRH and MCRL is equal to
or less than the maximum negative value for an 8-bit signed number (0xffffff80), the maxi-
mum negative value (Oxffffff80) is stored in Rn.

Oxffffff80 -> Rn
In all other cases, the lower 31 bits of MCRL are stored in Rn.
MCRL -> Rn

164 MCSTE

Chapter 2 Instruction description

Operation 4) When the set value is 9(0x00000009),

When the 32-bit result of the multiply-and-accumulate operation that is stored in the
multiply-and-accumulate registers MCRH and MCRL is equal to or greater than the
maximum positive value for a 9-bit signed number (0x000000ff), the maximum posi-
tive value (0xff) is stored in Rn.

0xff-> Rn

If the value stored in the multiply-and-accumulate register MCRL is equal to or less
than 0, the maximum negative value 0(0x00000000) is stored in Rn.

0x00000000 ->Rn

In all other cases, the lower 31 bits of MCRL are stored in Rn.

MCRL ->Rn

4) When the set value is 48 (0x00000030)

When the 64-bit result of the multiply-and-accumulate operation that is stored in the
multiply-and-accumulate registers MCRH and MCRL is equal to or greater than the
maximum positive value for a 48-bit signed number (0x00007 fffffffffff), the bits from
47 to 16 are stored in Rn as the operation result.

Ox7fffffff -> Rn

If the value stored in the multiply-and-accumulate registers MCRH and MCRL is
equal to or less than the maximum negative value for a 48-bit signed number
(0xffff800000000000), the bits from 47 to 16 are stored in Rn as the operation result.

0x80000000 -> Rn

In all other cases, the values from the bits 16 to 47 of MCRH and MCRL are stored in
Rn.

{MCRHJ[15:0], MCRL[31:16] -> Rn[31:0]

5) When the set value is other than the above-mentioned values,

Rn is undefined.

Assembler mnemonic Note VI|IC|IN|Z | Size

o
o
O

)
N

mcste imm8, Rn When multiply-and-accumulate operation overflow was
not detected (MCVF = 0)

When multiply-and-accumulate operation overflow was 110|212 4
detected (MCVF = 1)
Flag change

When multiply-and-accumulate operation overflow was not detected
VF: This is "0" and indicates that the multiply-and-accumulate operation is valid.
CF: Always “0”
NF: Undefined
ZF: Undefined
When multiply-and-accumulate operation overflow was detected
VF: This is "1" and indicates that the multiply-and-accumulate operation is invalid.
CF: Always “0”
NF: Undefined
ZF: Undefined

MCSTE 165

Chapter 2 Instruction description

BSCH Bit search instruction

BSCH Rm, Rn

Operation This instruction conducts a bit search within the 32-bit bit string stored in Rm, starting
from the bit position of the bit number indicated by the contents of (Rn - 1) in the direction of
descending bit numbers. The bit number of the first bit position where a “1” is found is then
stored in Rn.
When the least significant five bits of Rm are zeroes, the bit search is conducted from bit
31 in the direction of descending bit numbers.
If the bit search reaches bit 0 without finding a “1”, the “C” flag is set, 0 is written in Rn.
When execution of this instruction starts, the upper 27 bits of Rn are ignored.
Assembler mnemonic Note VI|ICIN|Z| Size
bsch Rm, Rn When the search operation was succeeded ("1"isfound) | ? | 0 | ? | ? 3

When the search operation was not succeeded ("1"isnot | 2| 1| ? | ? 3
found)

Flag change

When the search operation was succeeded
VF: Undefined
CF: This is "0" and indicates that the search operation is succeeded.
NF: Undefined
ZF: Undefined
When the search operation was not succeeded
VF: Undefined
CF: This is "1" and indicates that the search operation is not succeeded.
NF: Undefined
ZF: Undefined

166 BscH

Chapter 2 Instruction description

BSCH Rm, Rn, Rd

Operation This instruction conducts a bit search within the 32-bit bit string stored in Rm, starting from
the bit position of the bit number indicated by the contents of (Rn - 1) in the direction of descending
bit numbers. The bit number of the first bit position where a “1” is found is then stored in Rn.

When the least significant five bits of Rm are zeroes, the bit search is conducted from bit 31 in the
direction of descending bit numbers.
If the bit search reaches bit 0 without finding a “1”, the “C” flag is set, 0 is written in Rn.
When execution of this instruction starts, the upper 27 bits of Rn are ignored.
Assembler mnemonic Note VIC|IN|Z | Size
bsch Rm, Rn, Rd When the search operation was succeeded ("1"is found) [? |0 | ? | ? 4

When the search operation was not succeeded ("1"is not | ? 119212 4
found)

Flag change

When the search operation was succeeded
VF: Undefined
CF: This is "0" and indicates that the search operation is succeeded.
NF: Undefined
ZF: Undefined
When the search operation was not succeeded
VF: Undefined
CF: This is "1" and indicates that the search operation is not succeeded.
NF: Undefined
ZF: Undefined

BSCH 167

Chapter 2 Instruction description

ADD OPZ Parallel execution of addition

and OP2
ADD OP2 Rm1, Rn1, Rm2, Rn2
Operation [Rm1 + Rnl -> Rnl] with op2
This performs the paralell execution of the addition between the register (Rm1) and the regis-
ter (Rnl) and the op2 operation between the registers (Rm2 and Rn2).

Assembler mnemonic Note VIC|N|Z | Size
add_add Rm1, Rn1, Rm2, Rn2 Same as add_add of the OP1_ADD instruction S I 4
add_sub Rm1, Rn1, Rm2, Rn2 Same as add_sub of the OP1_SUB instruction S I R 4
add_cmp Rm1, Rn1, Rm2, Rn2 Same as add_cmp of the OP1_CMP instruction Al Al A|A| 4
add_mov Rm1, Rn1, Rm2, Rn2 Same as add_mov of the OP1_MOV instruction S 4
add_asr Rm1, Rn1, Rm2, Rn2 Same as add_asr of the OP1_ASR instruction S 4
add_Isr Rm1, Rn1, Rm2, Rn2 Same as add_|Isr of the OP1_LSR instruction I 4
add_asl Rm1, Rn1, Rm2, Rn2 Same as add_asl of the OP1_ASL instruction I I R 4

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
= tion result is undefined.

168 ADD oOP2

Chapter 2 Instruction description

ADD OP2 Rm1, Rn1, imm, Rn2

Operation| p/1 + Rnl > Ral] with op2
This performs the paralell execution of the addition between the register (Rm1) and the regis-
ter (Rnl) and the op2 operation between the immediate value (imm) and the register (Rn2).
Assembler mnemonic Note VIC|N|Z | Size
add_add Rm1, Rn1, imm4, Rn2 Same as add_add of the OP1_ADD instruction - I 4
add_sub Rm1, Rn1, imm4, Rn2 Same as add_sub of the OP1_SUB instruction - S I
add_cmp Rm1, Rn1,imm4, Rn2 [Same as add_cmp of the OP1_CMP instruction Al Al A| A

add_mov Rm1, Rn1,imm4, Rn2 [Same as add_mov of the OP1_MOV instruction - - -

add_asr Rm1, Rn1, imm4, Rn2 Same as add_asr of the OP1_ASR instruction N I

add_Isr Rm1, Rn1, imm4, Rn2 Same as add_lsr of the OP1_LSR instruction I

R EIEAESES

add_asl Rm1, Rn1, imm4, Rn2 Same as add_asl of the OP1_ASL instruction R I I

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
J tion result is undefined.

c
2
R
3]
S
S
R
7]
=

Liw

ADD OP2 169

Chapter 2 Instruction description

ADD OP2 imm, Rn1, Rm2, Rn2

Operation [(sign_ext)imm4 + Rnl -> Rnl] with op2
This performs the paralell execution of the addition between the sign-extended immediate
value (imm4) and the register (Rnl) and the op2 operation between the registers (Rm2 and
Rn2).

Assembler mnemonic Note VIC|N |z | Size
add_add imm4, Rn1, Rm2, Rn2 Same as add_add of the OP1_ADD instruction - [I 4
add_sub imm4, Rn1, Rm2, Rn2 Same as add_sub of the OP1_SUB instruction I R B
add_cmp imm4, Rn1, Rm2, Rn2 | Same as add_cmp of the OP1_CMP instruction Al Al Al A

add_mov imm4, Rn1, Rm2, Rn2 | Same as add_mov of the OP1_MOV instruction - - -] -

add_asr imm4, Rn1, Rm2, Rn2 Same as add_asr of the OP1_ASR instruction I R R

add_Isr imm4, Rn1, Rm2, Rn2 Same as add_lIsr of the OP1_LSR instruction I

R EIEAESES

add_asl imm4, Rn1, Rm2, Rn2 Same as add_asl of the OP1_ASL instruction [A I

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
J tion result is undefined.

170 ADD OP2

Chapter 2 Instruction description

ADD OP2 imm, Rn1, imm, Rn2

Operation

and the register (Rn2).

[(sign_ext)imm4* + Rnl -> Rnl] with op2 (* : 1st operand)

This performs the paralell execution of the addition between the sign-extended immediate

value (imm4) and the register (Rnl) and the op2 operation between the immediate value (imm)

Assembler mnemonic Note VIC|N|Z | Size
add_add imm4, Rn1, imm4, Rn2 Same as add_add of the OP1_ADD instruction - I 4
add_sub imm4, Rn1, imm4, Rn2 Same as add_sub of the OP1_SUB instruction - N I 4
add_cmp imm4, Rn1,imm4, Rn2 [Same as add_cmp of the OP1_CMP instruction Al Al Al A| 4
add_mov imm4, Rn1,imm4, Rn2 [Same as add_mov of the OP1_MOV instruction S R 4
add_asr imm4, Rn1, imm4, Rn2 Same as add_asr of the OP1_ASR instruction N I 4
add_lIsr imm4, Rn1, imm4, Rn2 Same as add_lIsr of the OP1_LSR instruction - I N 4
add_asl imm4, Rn1, imm4, Rn2 Same as add_asl of the OP1_ASL instruction I 4

Flag change

When OP2 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-

tion result is undefined.

ADD_OP2

171

Chapter 2 Instruction description

Cm OPZ Parallel execution of compari-

son and OP2

CMP_OP2 Rm1, Rn1, Rm2, Rn2

Operation [Rnl - Rm1] with op2
This performs the paralell execution of the comparison between the register (Rm1) and the
register (Rnl) and the op2 operation between the registers (Rm2 and Rn2).

Assembler mnemonic Note VIC|N|Zz | Size
cmp_add Rm1, Rn1, Rm2, Rn2 Same as cmp_add of the OP1_ADD instruction Al Al Al A 4
cmp_sub Rm1, Rn1, Rm2, Rn2 Same as cmp_sub of the OP1_SUB instruction Al Al Al A 4
cmp_mov Rm1, Rn1, Rm2, Rn2 Same as cmp_mov of the OP1_MOV instruction Al Al Al A 4
cmp_asr Rm1, Rn1, Rm2, Rn2 Same as cmp_asr of the OP1_ASR instruction Al Al Al A 4
cmp_Isr Rm1, Rn1, Rm2, Rn2 Same as cmp_Isr of the OP1_LSR instruction Al Al Al A 4
cmp_asl Rm1, Rn1, Rm2, Rn2 Same as cmp_asl of the OP1_ASL instruction Al Al Al A 4

Flag change

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

CMP_OP2 Rm1, Rn1, imm, Rn2

Operation [Rnl - Rm1] with op2

This performs the paralell execution of the comparison between the register (Rm1) and the

register (Rnl) and the op2 operation between the immediate value and the register (Rn2).

Assembler mnemonic Note VIC|N|Zz | Size

cmp_add Rm1, Rn1, imm4, Rn2 Same as cmp_add of the OP1_ADD instruction Al Al A A 4
cmp_sub Rm1, Rn1, imm4, Rn2 Same as cmp_sub of the OP1_SUB instruction Al Al Al A 4
cmp_mov Rm1, Rn1,imm4, Rn2 |Same as cmp_mov of the OP1_MOV instruction Al Al A A 4
cmp_asr Rm1, Rn1, imm4, Rn2 Same as cmp_asr of the OP1_ASR instruction Al Al Al A 4
cmp_Isr Rm1, Rn1, imm4, Rn2 Same as cmp_Isr of the OP1_LSR instruction Al Al Al A 4
cmp_asl Rm1, Rn1, imm4, Rn2 Same as cmp_asl of the OP1_ASL instruction Al Al Al A 4

Flag change

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

172 <MmP_OP2

Chapter 2 Instruction description

CMP_OP2 imm, Rn1, Rm2, Rn2

Operation [Rnl - (sign_ext)imm4] with op2
This performs the paralell execution of the comparison between the sign-extended immediate
value (imm4) and the register (Rnl) and the op2 operation between the registers (Rm2 and
Rn2).

Assembler mnemonic Note VIC|N|Z | Size
cmp_add imm4, Rn1, Rm2, Rn2 Same as cmp_add of the OP1_ADD instruction Al Al Al A 4
cmp_sub imm4, Rn1, Rm2, Rn2 Same as cmp_sub of the OP1_SUB instruction Al Al Al A 4
cmp_mov imm4, Rn1, Rm2, Rn2 [Same as cmp_mov of the OP1_MOV instruction Al Al Al A 4
cmp_asr imm4, Rn1, Rm2, Rn2 Same as cmp_asr of the OP1_ASR instruction Al Al Al A 4
cmp_lsr imm4, Rn1, Rm2, Rn2 Same as cmp_Isr of the OP1_LSR instruction Al Al Al A 4
cmp_asl imm4, Rn1, Rm2, Rn2 Same as cmp_asl of the OP1_ASL instruction Al Al Al A 4

Flag change

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

CMP_OP2 imm, Rn1, imm, Rn2

Operation [Rnl - (sign-ext)imm4*] with op2 (* : 1st operand)
This performs the paralell execution of the comparison between the first sign-extended immediate
value (imm4) and the register (Rn1) and the op2 operation between the immediate value (imm) and
the register (Rn2).

Assembler mnemonic Note VIC|N|Z | Size
cmp_add imm4, Rn1, imm4, Rn2 | Same as cmp_add of the OP1_ADD instruction Al Al Al A 4
cmp_sub imm4, Rn1, imm4, Rn2 [Same as cmp_sub of the OP1_SUB instruction Al Al A]l A 4
cmp_mov imm4, Rn1,imm4, Rn2 [Same as cmp_mov of the OP1_MOV instruction Al Al Al Al 4
cmp_asr imm4, Rn1, imm4, Rn2 Same as cmp_asr of the OP1_ASR instruction Al Al Al A 4
cmp_lsr imm4, Rn1, imm4, Rn2 Same as cmp_Isr of the OP1_LSR instruction Al Al Al A 4
cmp_asl imm4, Rn1, imm4, Rn2 Same as cmp_asl of the OP1_ASL instruction Al Al Al A 4

Flag change

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

cMP OP2 173

Chapter 2 Instruction description

Sl]B OPZ Parallel execution of subtrac-

tion and OP2

SUB_OP2 Rm1, Rn1, Rm2, Rn2

Operation [Rnl - Rm1 -> Rn1] with op2
This performs the paralell execution of the subtraction of the register (Rm1)from the register
(Rnl) and the op2 operation between the registers (Rm2 and Rn2).

Assembler mnemonic Note VIC|N|Z | Size
sub_add Rm1, Rn1, Rm2, Rn2 Same as sub_add of the OP1_ADD instruction I 4
sub_sub Rm1, Rn1, Rm2, Rn2 Same as sub_sub of the OP1_SUB instruction I 4
sub_cmp Rm1, Rn1, Rm2, Rn2 Same as sub_cmp of the OP1_CMP instruction Al Al Al A| 4
sub_mov Rm1, Rn1, Rm2, Rn2 Same as sub_mov of the OP1_MOV instruction - -] - - 4
sub_asr Rm1, Rn1, Rm2, Rn2 Same as sub_asr of the OP1_ASR instruction S 4
sub_Isr Rm1, Rn1, Rm2, Rn2 Same as sub_Isr of the OP1_LSR instruction I 4
sub_asl Rm1, Rn1, Rm2, Rn2 Same as sub_asl of the OP1_ASL instruction I I R 4

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
. tion result is undefined.

174 suB_opr2

Chapter 2 Instruction description

SUB _OP2 Rm1, Rn1, imm, Rn2

Operation

[Rnl - Rm1 -> Rnl] with op2

(Rnl) and the op2 operation between the immediate value (imm) and the register (Rn2).

This performs the paralell execution of the subtraction of the register (Rm1)from the register

Assembler mnemonic Note VIC|N|Z | Size
sub_add Rm1, Rn1, imm4, Rn2 Same as sub_add of the OP1_ADD instruction - I 4
sub_sub Rm1, Rn1, imm4, Rn2 Same as sub_sub of the OP1_SUB instruction - N I 4
sub_cmp Rm1, Rn1,imm4, Rn2 [Same as sub_cmp of the OP1_CMP instruction Al Al A| A 4
sub_mov Rm1, Rn1,imm4, Rn2 [Same as sub_mov of the OP1_MOV instruction S R 4
sub_asr Rm1, Rn1, imm4, Rn2 Same as sub_asr of the OP1_ASR instruction N I 4
sub_Isr Rm1, Rn1, imm4, Rn2 Same as sub_lsr of the OP1_LSR instruction I 4
sub_asl Rm1, Rn1, imm4, Rn2 Same as sub_asl of the OP1_ASL instruction N 4

Flag change

When OP2 is other than the CMP instruction

VF : No change
CF : No change
NF : No change
ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-

tion result is undefined.

SUB_OP2

175

Chapter 2 Instruction description

SUB _OP2 imm, Rn1, Rm2, Rn2

Operation

[Rnl - (sign_ext)imm4 -> Rnl1] with op2

immediate value (imm4) and the op2 operation between the registers (Rm2 and Rn2).

This performs the paralell execution of the subtraction of the register (Rm1) from the sign-extended

Assembler mnemonic Note VICIN Size
sub_add imm4, Rn1, Rm2, Rn2 Same as sub_add of the OP1_ADD instruction . 4
sub_sub imm4, Rn1, Rm2, Rn2 Same as sub_sub of the OP1_SUB instruction - - - 4
sub_cmp imm4, Rn1, Rm2, Rn2 Same as sub_cmp of the OP1_CMP instruction Al Al A 4
Sub_mov imm4, Rn1, Rm2, Rn2 Same as sub_mov of the OP1_MOV instruction - -] - 4
sub_asr imm4, Rn1, Rm2, Rn2 Same as sub_asr of the OP1_ASR instruction . 4
sub_Isr imm4, Rn1, Rm2, Rn2 Same as sub_Isr of the OP1_LSR instruction . 4
sub_asl imm4, Rn1, Rm2, Rn2 Same as sub_asl of the OP1_ASL instruction - 4

Flag change

VF : No change
CF : No change
NF : No change
ZF : No change

When OP2 is other than the CMP instruction

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-

tion result is undefined.

176 SuB opr2

Chapter 2 Instruction description

SUB OP2 imm, Rn1, imm, Rn2

Operation [Rnl - (sign_ext)imm4* -> Rnl] with op2 (* : 1st operand)
This performs the paralell execution of the subtraction of the register (Rm1) from the first sign-
extended immediate value (imm4) and the op2 operation between the immediate value (imm4)
and the register (Rn2).

Assembler mnemonic Note VIC|N|Z | Size
sub_add imm4, Rn1,imm4, Rn2 |Same as sub_add of the OP1_ADD instruction - I 4
sub_sub imm4, Rn1,imm4, Rn2 | Same as sub_sub of the OP1_SUB instruction S
sub_cmp imm4, Rn1, imm4, Rn2 |Same as sub_cmp of the OP1_CMP instruction Al Al A A

sub_mov imm4, Rn1, imm4, Rn2 |Same as sub_mov of the OP1_MOV instruction - - -

sub_asr imm4, Rn1, imm4, Rn2 [Same as sub_asr of the OP1_ASR instruction N I I

sub_Isr imm4, Rn1, imm4, Rn2 Same as sub_Isr of the OP1_LSR instruction I

R EIEAESES

sub_asl imm4, Rn1, imm4, Rn2 Same as sub_asl of the OP1_ASL instruction R I I

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
J tion result is undefined.

SUB OP2 177

Chapter 2 Instruction description

MO ' OPZ Parallel execution of transfer

and OP2

MOV_OP2 Rm1, Rn1, Rm2, Rn2

Operation [Rm1 -> Rn1] with op2
This performs the paralell execution of the transfer of the register (Rm1) to the register (Rnl)
and the op2 operation between the registers (Rm2 and Rn2).

Assembler mnemonic Note VIC|N|Z | Size
mov_add Rm1, Rn1, Rm2, Rn2 Same as mov_add of the OP1_ADD instruction I I 4
mov_sub Rm1, Rn1, Rm2, Rn2 Same as mov_sub of the OP1_SUB instruction I 4
mov_cmp Rm1, Rn1, Rm2, Rn2 | Same as mov_cmp of the OP1_CMP instruction Al Al AlA| 4
mov_mov Rm1, Rn1, Rm2, Rn2 | Same as mov_mov of the OP1_MOV instruction S 4
mov_asr Rm1, Rn1, Rm2, Rn2 Same as mov_asr of the OP1_ASR instruction I 4
mov_Isr Rm1, Rn1, Rm2, Rn2 Same as mov_Isr of the OP1_LSR instruction I 4
mov_asl Rm1, Rn1, Rm2, Rn2 Same as mov_asl of the OP1_ASL instruction [R N 4

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
= tion result is undefined.

178 MoV _op2

Chapter 2 Instruction description

MOV_OP2 Rm1, Rn1, imm, Rn2

Operation [Rm1 -> Rnl1] with op2
This performs the paralell execution of the transfer of the register (Rm1) to the register (Rnl)
and the op2 operation between the immediate value (imm) and the register (Rn2).

Assembler mnemonic Note VIC|N|Z | Size
mov_add Rm1, Rn1, imm4, Rn2 Same as mov_add of the OP1_ADD instruction N R R 4
mov_sub Rm1, Rn1, imm4, Rn2 Same as mov_sub of the OP1_SUB instruction I 4
mov_cmp Rm1, Rn1,imm4, Rn2 | Same as mov_cmp of the OP1_CMP instruction Al Al AlA| 4
mov_mov Rm1, Rn1,imm4, Rn2 | Same as mov_mov of the OP1_MOV instruction S 4
mov_asr Rm1, Rn1, imm4, Rn2 Same as mov_asr of the OP1_ASR instruction I R R 4
mov_Isr Rm1, Rn1, imm4, Rn2 Same as mov_Isr of the OP1_LSR instruction - [4
mov_asl Rm1, Rn1, imm4, Rn2 Same as mov_asl of the OP1_ASL instruction [I N 4

Flag change
When OP2 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change
When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.
ZF : "1" when the operation result is "0"; "0" in all other cases.

(

When the OP2 is not a compare operation (CMP) and Rd1=Rd?2 is specified, the opera-

tion result is undefined.

MOV_OP2

179

Chapter 2 Instruction description

MOV_OP2 imm, Rn1, Rm2, Rn2

Operation [(sign-ext)imm4 -> Rnl] with op2

(imm4) to the register (Rnl) and the op2 operation between the registers (Rm2 and Rn2).

This performs the paralell execution of the transfer of the sign-extended immediate value

Assembler mnemonic Note VIC|N|Z | Size
mov_add imm4, Rn1, Rm2, Rn2 Same as mov_add of the OP1_ADD instruction I 4
mov_sub imm4, Rn1, Rm2, Rn2 Same as mov_sub of the OP1_SUB instruction I 4
mov_cmp imm4, Rn1, Rm2, Rn2 | Same as mov_cmp of the OP1_CMP instruction Al Al A|A| 4
mov_mov imm4, Rn1, Rm2, Rn2 | Same as mov_mov of the OP1_MOV instruction S 4
mov_asr imm4, Rn1, Rm2, Rn2 Same as mov_asr of the OP1_ASR instruction S 4
mov_Isr imm4, Rn1, Rm2, Rn2 Same as mov_Isr of the OP1_LSR instruction I 4
mov_asl imm4, Rn1, Rm2, Rn2 Same as mov_asl of the OP1_ASL instruction S N R 4

Flag change

When OP2 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-

tion result is undefined.

180 MoV _op2

Chapter 2 Instruction description

MOV_OP2 imm, Rn1, imm, Rn2

Operation [(sign_ext)imm4* -> Rnl] with op2 (* : 1st operand)
This performs the paralell execution of the transfer of the first sign-extended immediate value
(imm4) to the register (Rnl) and the op2 operation between the immediate value (imm) and the
registers (Rn2).

Assembler mnemonic Note VIC|N|Z | Size
mov_add imm4, Rn1, imm4, Rn2 Same as mov_add of the OP1_ADD instruction I 4
mov_sub imm4, Rn1, imm4, Rn2 |[Same as mov_sub of the OP1_SUB instruction I 4
mov_cmp imm4, Rn1, imm4, Rn2 | Same as mov_cmp of the OP1_CMP instruction Al Al AlA| 4
mov_mov imm4, Rn1, imm4, Rn2 | Same as mov_mov of the OP1_MOV instruction S R 4
mov_asr imm4, Rn1, imm4, Rn2 Same as mov_asr of the OP1_ASR instruction I R R 4
mov_Isr imm4, Rn1, imm4, Rn2 Same as mov_Isr of the OP1_LSR instruction - [4
mov_asl imm4, Rn1, imm4, Rn2 Same as mov_asl of the OP1_ASL instruction N I I 4

Flag change
When OP2 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change
When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.
ZF : "1" when the operation result is "0"; "0" in all other cases.

(

When the OP2 is not a compare operation (CMP) and Rd1=Rd?2 is specified, the opera-
tion result is undefined.

MOV_OP2

181

Chapter 2 Instruction description

AND OP2

and OP2

Parallel execution of AND

AND_OP2 Rm1, Rn1, Rm2, Rn2

Operation

[Rm1 & Rnl -> Rnl] with op2

(Rnl) and the op2 operation between the registers (Rm2 and Rn2).

This performs the paralell execution of the AND between the register (Rm1) and the register

Assembler mnemonic

Note

Size

and_add Rm1, Rn1, Rm2, Rn2

Same as and_add of the OP1_ADD instruction

and_sub Rm1, Rn1, Rm2, Rn2

Same as and_sub of the OP1_SUB instruction

and_cmp Rm1, Rn1, Rm2, Rn2

Same as and_cmp of the OP1_CMP instruction

and_mov Rm1, Rn1, Rm2, Rn2

Same as and_mov of the OP1_MOV instruction

and_asr Rm1, Rn1, Rm2, Rn2

Same as and_asr of the OP1_ASR instruction

and_Isr Rm1, Rn1, Rm2, Rn2

Same as and_Isr of the OP1_LSR instruction

and_asl Rm1, Rn1, Rm2, Rn2

Same as and_asl of the OP1_ASL instruction

BN I S I S S

Flag change

VF : No change
CF : No change
NF : No change
ZF : No change

When OP2 is other than the CMP instruction

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

tion result is undefined.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-

182 AND OP2

Chapter 2 Instruction description

AND OP2 Rm1, Rn1, imm, Rn2

Operation [Rm1 & Rnl -> Rnl] with op2

This performs the paralell execution of the AND between the register (Rm1) and the register

(Rnl) and the op2 operation between the immediate value (imm) and the register (Rn2).

Assembler mnemonic Note VIC|N|Z | Size

and_add Rm1, Rn1, imm4, Rn2 Same as and_add of the OP1_ADD instruction N 4
and_sub Rm1, Rn1, imm4, Rn2 Same as and_sub of the OP1_SUB instruction I 4
and_cmp Rm1, Rn1,imm4, Rn2 [Same as and_cmp of the OP1_CMP instruction Al Al Al A| 4
and_mov Rm1, Rn1,imm4, Rn2 | Same as and_mov of the OP1_MOV instruction S 4
and_asr Rm1, Rn1, imm4, Rn2 Same as and_asr of the OP1_ASR instruction I R R 4
and_Isr Rm1, Rn1, imm4, Rn2 Same as and_Isr of the OP1_LSR instruction I 4
and_asl Rm1, Rn1, imm4, Rn2 Same as and_asl of the OP1_ASL instruction [I N 4

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd?2 is specified, the opera-
J tion result is undefined.

AND OP2 183

Chapter 2 Instruction description

OR OPZ Parallel execution of OR and

OP2

OR OP2 Rm1, Rn1, Rm2, Rn2

Operation [Rm1 | Rnl -> Rnl1] with op2
This performs the paralell execution of the OR between the register (Rm1) and the register
(Rnl) and the op2 operation between the registers (Rm2 and Rn2).
Assembler mnemonic Note VIC|N |z | Size
pr add Rm1, Rn1, Rm2, Rn2 Same as or_add of the OP1_ADD instruction - I R 4
pr_ sub Rm1, Rn1, Rm2, Rn2 Same as or_sub of the OP1_SUB instruction - I R 4
pr_cmp Rm1, Rn1, Rm2, Rn2 Same as or_cmp of the OP1_CMP instruction Al Al A| A 4
pbr_mov Rm1, Rn1, Rm2, Rn2 Same as or_mov of the OP1_MOV instruction I 4
pr_asr Rm1, Rn1, Rm2, Rn2 Same as or_asr of the OP1_ASR instruction I R 4
pr_Isr Rm1, Rn1, Rm2, Rn2 Same as or_Isr of the OP1_LSR instruction I 4
pr_asl Rm1, Rn1, Rm2, Rn2 Same as or_asl of the OP1_ASL instruction _ I 4

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
d tion result is undefined.

184 ORr oP2

Chapter 2 Instruction description

OR OP2 Rm1, Rn1, imm, Rn2

Operation [Rml | Rnl -> Rnl] with op2

This performs the paralell execution of the OR between the register (Rm1) and the register

(Rn1) and the op2 operation between the immediate value (imm) and the register (Rn2).

Assembler mnemonic Note VIC|N |z | Size

or_add Rm1, Rn1, imm4, Rn2 Same as or_add of the OP1_ADD instruction - - - - 4
or_sub Rm1, Rn1, imm4, Rn2 Same as or_sub of the OP1_SUB instruction - N 4
or_cmp Rm1, Rn1, imm4, Rn2 Same as or_cmp of the OP1_CMP instruction Al Al A A 4
or_mov Rm1, Rn1, imm4, Rn2 Same as or_mov of the OP1_MOV instruction - - - - 4
or_asr Rm1, Rn1, imm4, Rn2 Same as or_asr of the OP1_ASR instruction - S R 4
or_Isr Rm1, Rn1, imm4, Rn2 Same as or_Isr of the OP1_LSR instruction - N 4
or_asl Rm1, Rn1, imm4, Rn2 Same as or_asl of the OP1_ASL instruction - I 4

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
d tion result is undefined.

OR OP2 185

Chapter 2 Instruction description

XOR Ol 2 Parallel execution of XOR

and OP2

XOR OP2 Rm1, Rn1, Rm2, Rn2

Operation [Rm1” Rnl -> Rn1] with op2
This performs the paralell execution of the XOR between the register (Rm1) and the register
(Rnl) and the op2 operation between the registers (Rm2 and Rn2).

Assembler mnemonic Note VIC|N |z | Size
kor_add Rm1, Rn1, Rm2, Rn2 Same as xor_add of the OP1_ADD instruction - I R 4
kor_sub Rm1, Rn1, Rm2, Rn2 Same as xor_sub of the OP1_SUB instruction - I R 4
kor_cmp Rm1, Rn1, Rm2, Rn2 Same as xor_cmp of the OP1_CMP instruction Al Al Al A 4
xor_mov Rm1, Rn1, Rm2, Rn2 Same as xor_mov of the OP1_MOV instruction I 4
kor_asr Rm1, Rn1, Rm2, Rn2 Same as xor_asr of the OP1_ASR instruction I R 4
kor_Isr Rm1, Rn1, Rm2, Rn2 Same as xor_lsr of the OP1_LSR instruction I 4
kor_asl Rm1, Rn1, Rm2, Rn2 Same as xor_asl of the OP1_ASL instruction R I 4

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
d tion result is undefined.

186 XOR oP2

Chapter 2 Instruction description

XOR OP2 Rm1, Rn1,imm, Rn2

Operation [Rm1” Rnl -> Rnl] with op2
This performs the paralell execution of the XOR between the immediate value (imm) and the
register (Rnl) and the op2 operation between the registers (Rm2 and Rn2).

Assembler mnemonic Note VIC|N |z | Size
kor_add Rm1, Rn1, imm4, Rn2 Same as xor_add of the OP1_ADD instruction - I N 4
kor_sub Rm1, Rn1, imm4, Rn2 Same as xor_sub of the OP1_SUB instruction - I I 4
kor_cmp Rm1, Rn1, imm4, Rn2 Same as xor_cmp of the OP1_CMP instruction Al AlAlA| 4
xor_mov Rm1, Rn1, imm4, Rn2 Same as xor_mov of the OP1_MOV instruction . 4
kor_asr Rm1, Rn1, imm4, Rn2 Same as xor_asr of the OP1_ASR instruction - I 4
kor_Isr Rm1, Rn1, imm4, Rn2 Same as xor_lIsr of the OP1_LSR instruction - I A 4
kor_asl Rm1, Rn1, imm4, Rn2 Same as xor_asl of the OP1_ASL instruction R I I 4

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
d tion result is undefined.

XOR OP2 187

Chapter 2 Instruction description

DMACH OP2

Parallel execution of
dual multiply-and-accumulate
operation and OP2

DMACH _OP2 Rm1, Rn1, Rm2, Rn2

Operation

condition is kept.

[(sign_ext) (Rm1[31:16] * (sign_ext)Rnl[31:16])
+((sign_ext)Rm1[15:0] * (sign_ext)Rn1[15:0]+MCRL -> MCRL] with op2

This instruction adds the results of the multiplications between the upper 16 bits of the reg-
ister (Rm1) and the upper 16 bits of the sign-extended register (Rnl) and between the lower
16 bits of the sign-extended register (Rm1) and the lower 16bits of the sign-extended register
(Rn1), and MCRL to each other. Then it performs the parallel execution of storing the opera-
tion result in MCRL and executing the op2 operation between the registerS (Rm2 and Rn2).

When that operation result overflows out of 32 bits, MCVF is set to 1

and the previous

Assembler mnemonic

Note

dmach_add Rm1, Rn1, Rm2, Rn2

Same as dmach_add of the OP1_ADD instruction

dmach_sub Rm1, Rn1, Rm2, Rn2

Same as dmach_sub of the OP1_SUB instruction

dmach_cmp Rm1, Rn1, Rm2, Rn2

Same as dmach_cmp of the OP1_CMP instruction

dmach_mov Rm1, Rn1, Rm2, Rn2

Same as dmach_mov of the OP1_MOV instruction

dmach_asr Rm1, Rn1, Rm2, Rn2

Same as dmach_asr of the OP1_ASR instruction

dmach_Isr Rm1, Rn1, Rm2, Rn2

Same as dmach_lIsr of the OP1_LSR instruction

dmach_asl Rm1, Rn1, Rm2, Rn2

Same as dmach_asl of the OP1_ASL instruction

CIN|Z | Size
-l - - 4

-l - - 4
AlA|A 4

-l - - 4

-l - - 4

-l - - 4

-l - - 4

Flag change

VF
CF

ZF

No change
No change
No change
No change

When OP2 is other than the CMP instruction
VF :
CF :
NF :
ZF :
When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

: "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

: "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

: "1" when the operation result is "0"; "0" in all other cases.

4

When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
tion result is undefined.

188 DMACH oOP2

Chapter 2 Instruction description

DMACH_OP2 Rm1, Rn1, imm, Rn2

Operation

[(sign_ext) (Rm1[31:16] * (sign_ext)Rn1[31:16])
+((sign_ext)Rm1[15:0] * (sign_ext)Rn1[15:0]+MCRL -> MCRL] with op2

This instruction adds the results of the multiplications between the upper 16 bits of the reg-
ister (Rm1) and the upper 16 bits of the sign-extended register (Rnl) and between the lower
16 bits of the sign-extended register (Rm1) and the lower 16bits of the sign-extended register
(Rnl), and MCRL to each other. Then it performs the parallel execution of storing the opera-
tion result in MCRL and executing the op2 operation between the registerS (imm and Rn2).

When that operation result overflows out of 32 bits, MCVF is set to 1 and the previous

condition is kept.

Assembler mnemonic Note VIC|N|Zz | Size
dmach_add Rm1, Rn1,imm4, Rn2 |Same as dmach_add of the OP1_ADD instruction - - - - 4

dmach_sub Rm1, Rn1, imm4, Rn2 Same as dmach_sub of the OP1_SUB instruction - - - - 4

dmach_cmp Rm1, Rn1,imm4, Rn2 | Same as dmach_cmp of the OP1_CMP instruction | A | A |A | A| 4

dmach_mov Rm1, Rn1,imm4, Rn2 | Same as dmach_mov of the OP1_MOV instruction| - | - | - | - 4

dmach_asr Rm1, Rn1, imm4, Rn2 Same as dmach_asr of the OP1_ASR instruction - -] - - 4

dmach_Isr Rm1, Rn1, imm4, Rn2 Same as dmach_lIsr of the OP1_LSR instruction I - 4

dmach_asl Rm1, Rn1,imm4, Rn2 | same as dmach_asl of the OP1_ASL instruction | - | = | - | - | 4
Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

‘ When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
. tion result is undefined.

DMACH OP2 189

Chapter 2 Instruction description

SWHW OP2

Parallel execution of the data exchange between the
upper 2bytes and lower 2 bytes and OP2

SWHW_OP2 Rm1, Rn1, Rm2, Rn2

Operation
[Rm1[15:0] -=> Rn1[31:16], Rm1[31: 16] -> Rn1[15:0]] with op2
This instruction performs the parallel execution of storing the upper 16 bits of the register
(Rm1) in the lower 16 bits of the register (Rnl), storing the lower 16 bits of the register
(Rm1) in the upper 16 bits of the register (Rnl), and op2 operation between the registers
(Rm2 and Rn2).
Assembler mnemonic Note VIC|N |z | Size
swhw_add Rm1, Rn1, Rm2, Rn2 [Same as swhw_add of the OP1_ADD instruction N R - 4

swhw_sub Rm1, Rn1, Rm2, Rn2 Same as swhw_sub of the OP1_SUB instruction R -
swhw_cmp Rm1, Rn1, Rm2, Rn2 | Same as swhw_cmp of the OP1_CMP instruction AlATA|A
swhw_mov Rm1, Rn1, Rm2, Rn2 | Same as swhw_mov of the OP1_MOV instruction -l - -
swhw_asr Rm1, Rn1, Rm2, Rn2 Same as swhw_asr of the OP1_ASR instruction S S -
swhw_Isr Rm1, Rn1, Rm2, Rn2 Same as swhw_lIsr of the OP1_LSR instruction I -
swhw_asl Rm1, Rn1, Rm2, Rn2 | Same as swhw_asl of the OP1_ASL instruction Eo B B

Flag change

e N N e N

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

‘ When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
= tion result is undefined.

190 SwHW_opP2

Chapter 2 Instruction description

SWHW_OP2 Rm1, Rn1, imm, Rn2

Operation
[Rm1[15:0] -> Rn1[31:16], Rm1[31: 16] -> Rn1[15:0]] with op2
This instruction performs the parallel execution of storing the upper 16 bits of the register
(Rm1) in the lower 16 bits of the register (Rnl), storing the lower 16 bits of the register
(Rm1) in the upper 16 bits of the register (Rnl), and op2 operation between the immediate
value (imm) and the register (Rn2).
Assembler mnemonic Note VIC|N|Zz | Size
swhw_add Rm1, Rn1,imm4, Rn2 [Same as swhw_add of the OP1_ADD instruction S R - 4

swhw_sub Rm1, Rn1,imm4, Rn2 |[Same as swhw_sub of the OP1_SUB instruction - - - -
swhw_cmp Rm1, Rn1, imm4, Rn2 |Same as swhw_cmp of the OP1_CMP instruction AlA|IA]| A
swhw_mov Rm1, Rn1,imm4, Rn2 [Same as swhw_mov of the OP1_MOV instruction T
swhw_asr Rm1, Rn1, imm4, Rn2 | Same as swhw_asr of the OP1_ASR instruction - -
swhw_Isr Rm1, Rn1, imm4, Rn2 Same as swhw_lIsr of the OP1_LSR instruction S R -

swhw_asl Rm1, Rn1,imm4, Rn2 [Same as swhw_asl of the OP1_ASL instruction - -] - -

NN eSS

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

‘ When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
= tion result is undefined.

SWHW OP2 191

Chapter 2 Instruction description

S A' ‘ I 1' 6 OI)I {’ Parallel execution of the satu-
ration operation of the upper

16 bits and OP2

SAT16_0OP2 Rm1, Rn1, Rm2, Rn2

Operation [(SAT16 op.) Rm1 -> Rn1] with op2
When source register Rm1 is
1) equal or bigger than maximum positive value (0x00007FFF) for 16-bit signed number, the
maximum positive value (0x00007FFF) is stored into the register (Rnl).
2) equal or smaller than minimum negative value (0xFFFF8000) for 16-bit signed number, the
minimum negative value (0OxFFFF8000) is stored into the register (Rnl).
3) other than 1) or 2), the contents of the register (Rm1) are stored into the register (Rnl).
Parallel execution is carried out for op2 operations of SAT16 and Rm2, Rn2.

Assembler mnemonic Note VIC|N |z | Size
5at16_add Rm1, Rn1, Rm2, Rn2 [Same as sat16_add of the OP1_ADD instruction N R - 4
5at16_sub Rm1, Rn1, Rm2, Rn2 Same as sat16_sub of the OP1_SUB instruction R - 4
at16_cmp Rm1, Rn1, Rm2, Rn2 [Same as sat16_cmp of the OP1_CMP instruction AlATA|A 4
sat16_mov Rm1, Rn1, Rm2, Rn2 [Same as sat16_mov of the OP1_MOV instruction - - - 4
5at16_asr Rm1, Rn1, Rm2, Rn2 Same as sat16_asr of the OP1_ASR instruction I - 4
5at16_Isr Rm1, Rn1, Rm2, Rn2 Same as sat16_Isr of the OP1_LSR instruction - - - - 4
sat16_asl Rm1, Rn1, Rm2, Rn2 Same as sat16_asl of the OP1_ASL instruction o e e 4

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

‘ When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
= tion result is undefined.

192 SAT16_OP2

Chapter 2 Instruction description

SAT16_0OP2 Rm1, Rn1, imm, Rn2

Operation

[(SAT16 op.) Rm1 -> Rnl] with op2

When source register Rm1 is

1) equal or bigger than maximum positive value (0x00007FFF) for 16-bit signed number, the
maximum positive value (0x00007FFF) is stored into the register (Rnl).

2) equal or smaller than minimum negative value (0xFFFF8000) for 16-bit signed number, the
minimum negative value (0OxFFFF8000) is stored into the register (Rnl).

3) other than 1) or 2), the contents of the register (Rm1) are stored into the register (Rnl).

Assembler mnemonic Note VIC|N |z | Size
5at16_add Rm1, Rn1, imm4, Rn2 |Same as sat16_add of the OP1_ADD instruction - - - - 4

5at16_sub Rm1, Rn1, imm4, Rn2 [Same as sat16_sub of the OP1_SUB instruction I R -
sat16_cmp Rm1, Rn1,imm4, Rn2 [Same as sat16_cmp of the OP1_CMP instruction A|lA|A|A
sat16_mov Rm1, Rn1,imm4, Rn2 [Same as sat16_mov of the OP1_MOV instruction - - -
5at16_asr Rm1, Rn1,imm4, Rn2 | Same as sat16_asr of the OP1_ASR instruction I -
5at16_Isr Rm1, Rn1, imm4, Rn2 Same as sat16_Isr of the OP1_LSR instruction - - - -

sat16_asl Rm1, Rn1,imm4, Rn2 | Same as sat16_asl of the OP1_ASL instruction o N
Flag change

NN N E NS

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

‘ When the OP2 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
. tion result is undefined.

SATI6 OP2 193

Chapter 2 Instruction description

OP1 ADD

Parallel execution of OP1 and
addition

OP1_ADD Rm1, Rn1, Rm2, Rn2

Operation [Rm2 +Rn -> Rn2] with opl

the opl operation between the registers (Rm1 and Rnl).

This performs the paralell execution of the addition between the registers (Rm2 and Rn2) and

Assembler mnemonic Note \V Size
add_add Rm1, Rn1, Rm2, Rn2 Same as add_add of the ADD_OP2 instruction - 4
cmp_add Rm1, Rn1, Rm2, Rn2 Same as cmp_add of the CMP_OP2 instruction A 4
sub_add Rm1, Rn1, Rm2, Rn2 Same as sub_add of the SUB_OP?2 instruction - 4
mov_add Rm1, Rn1, Rm2, Rn2 Same as mov_add of the MOV_OP2 instruction - 4
and_add Rm1, Rn1, Rm2, Rn2 Same as and_add of the AND_OP2 instruction - 4
or_add Rm1, Rn1, Rm2, Rn2 Same as or_add of the OR_OP2 instruction - 4
xor_add Rm1, Rn1, Rm2, Rn2 Same as xor_add of the XOR_OP2 instruction - 4
dmach_add Rm1, Rn1, Rm2, Rn2 |Same as dmach_add of the DMACH_OP?2 instruction| - 4
swhw_add Rm1, Rn1, Rm2, Rn2 |Same as swhw_add of the SWHW_OP?2 instruction | - 4
sat16_add Rm1, Rn1, Rm2, Rn2 Same as sat16_add of the SAT16_OP2 instruction - 4

Flag change
When OP1 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change
When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.
ZF : "1" when the operation result is "0"; "0" in all other cases.
G When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
J tion result is undefined.

194 or1_ADD

Chapter 2 Instruction description

OP1_ADD imm, Rn1, Rm2, Rn2

Operation [Rm2 +Rn -> Rn2] with opl

the opl operation between the immediate value (imm) and the register (Rnl).

This performs the paralell execution of the addition between the registers (Rm2 and Rn2) and

Assembler mnemonic

Note

\Y

C

Size

add_add imm4, Rn1, Rm2, Rn2 Same as add_add of the ADD_OP2 instruction

cmp_add imm4, Rn1, Rm2, Rn2 Same as cmp_add of the CMP_OP2 instruction

sub_add imm4, Rn1, Rm2, Rn2 Same as sub_add of the SUB_OP2 instruction

mov_add imm4, Rn1, Rm2, Rn2 | Same as mov_add of the MOV_OP2 instruction

NI

Flag change

When OP2 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP1 is not a compare operation (CMP) and Rd1=Rd?2 is specified, the opera-

tion result is undefined.

OP1_ADD

195

Chapter 2 Instruction description

OP1_ADD Rm1, Rn1, imm, Rn2

Operation

[(sign_ext) imm4+Rn2 -> Rn2] with opl

This performs the paralell execution of the addition between the sign-extended immediate

value (imm4) the register (Rn2) and the opl operation between the registers (Rm1 and Rnl).

sat16_add Rm1, Rn1, imm4, Rn2

Assembler mnemonic Note VIC|NI| Z| Size
add_add Rm1, Rn1, imm4, Rn2 Same as add_add of the ADD_OP2 instruction == - - 4
cmp_add Rm1, Rn1, imm4, Rn2 Same as cmp_add of the CMP_OP2 instruction Al Al A A 4
sub_add Rm1, Rn1, imm4, Rn2 Same as sub_add of the SUB_OP2 instruction -] -] - 4
mov_add Rm1, Rn1,imm4, Rn2 | Same as mov_add of the MOV_OP2 instruction -] -] - 4
and_add Rm1, Rn1, imm4, Rn2 Same as and_add of the AND_OP2 instruction - -] - - 4
or_add Rm1, Rn1,imm4, Rn2 Same as or_add of the OR_OP2 instruction - -] - - 4
xor_add Rm1, Rn1, imm4, Rn2 Same as xor_add of the XOR_OP2 instruction - -] - - 4
dmach_add Rm1,Rn1,imm4,Rn2 |Same as dmach_add of the DMACH_OP?2 instruction| - | - | - | - 4
swhw_add Rm1, Rn1,imm4, Rn2 |Same as swhw_add of the SWHW_OP2 instruction | - | - | - | - 4

Same as sat16_add of the SAT16_OP2 instruction -] - - 4

Flag change

VF :
CF:
NF :
ZF :

No change
No change
No change
No change

When OP2 is other than the CMP instruction

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

(1

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
tion result is undefined.

196 oP1_ADD

Chapter 2 Instruction description

OP1_ADD imm, Rn1, imm, Rn2
Operation [(sign_ext) imm4* + Rn2 -> Rn2] with opl (* : 3rd operand)
This performs the paralell execution of the addition between the sign-extended first immediate
value (imm4) the register (Rn2) and the opl operation between the immediate value (imm) and
the register (Rnl).

Assembler mnemonic Note VICIN|Z | Size
add_add imm4, Rn1, imm4, Rn2 Same as add_add of the ADD_OP2 instruction -0 - - - 4
cmp_add imm4, Rn1, imm4, Rn2 [Same as cmp_add of the CMP_OP2 instruction Al Al Al A 4
sub_add imm4, Rn1,imm4, Rn2 [Same as sub_add of the SUB_OP2 instruction == -] - 4
mov_add imm4, Rn1,imm4, Rn2 | Same as mov_add of the MOV_OP?2 instruction -] -] - 4

Flag change
When OP1 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change
When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.
ZF : "1" when the operation result is "0"; "0" in all other cases.
G When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
J tion result is undefined.

OP1_ADD 197

Chapter 2 Instruction description

OP1 SUB

subtraction

Parallel execution of OP1 and

OP1_SUB Rm1, Rn1, Rm2, Rn2

Operation

[Rn2 - Rm2 -> Rn2] with opl

(Rn2) and the opl operation between the registers (Rm1 and Rnl).

This performs the paralell execution of the subtraction of the register (Rm2) from the register

Assembler mnemonic Note Size
add_sub Rm1, Rn1, Rm2, Rn2 Same as add_sub of the ADD_OP2 instruction 4
cmp_sub Rm1, Rn1, Rm2, Rn2 Same as cmp_sub of the CMP_OP2 instruction 4
sub_sub Rm1, Rn1, Rm2, Rn2 Same as sub_sub of the SUB_OP2 instruction 4
mov_sub Rm1, Rn1, Rm2, Rn2 Same as mov_sub of the MOV_OP2 instruction 4
and_sub Rm1, Rn1, Rm2, Rn2 Same as and_sub of the AND_OP2 instruction 4
or_sub Rm1, Rn1, Rm2, Rn2 Same as or_sub of the OR_OP2 instruction 4
xor_sub Rm1, Rn1, Rm2, Rn2 Same as xor_sub of the XOR_OP2 instruction 4
dmach_sub Rm1, Rn1, Rm2, Rn2 |Same as dmach_sub of the DMACH_OP2 instruction 4
swhw_sub Rm1, Rn1, Rm2, Rn2 |Same as swhw_sub of the SWHW_OP2 instruction 4
sat16_sub Rm1, Rn1, Rm2, Rn2 Same as sat16_sub of the SAT16_OP2 instruction 4

Flag change
When OP1 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change
When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.
ZF : "1" when the operation result is "0"; "0" in all other cases.
G When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
= tion result is undefined.

198 ori1 _SUB

Chapter 2 Instruction description

OP1_SUB imm, Rn1, Rm2, Rn2

Operation| g5 - Rm2 -> Rn2] with opl
This performs the paralell execution of the subtraction of the register (Rm2) from the register
(Rn2) and the opl operation between the immediate value and the register (Rnl).

Assembler mnemonic Note VICIN|Z | Size
add_sub imm4, Rn1, Rm2, Rn2 Same as add_sub of the ADD_OP2 instruction - - -] -
cmp_sub imm4, Rn1, Rm2, Rn2 Same as cmp_sub of the CMP_OP2 instruction Al Al Al A 4
sub_sub imm4, Rn1, Rm2, Rn2 Same as sub_sub of the SUB_OP2 instruction == -] - 4
mov_sub imm4, Rn1, Rm2, Rn2 Same as mov_sub of the MOV_OP2 instruction -] -] - 4

Flag change

When OP2 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

G When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
J tion result is undefined.

OP1 SUB 199

Chapter 2 Instruction description

OP1_SUB Rm1, Rn1, imm, Rn2

Operation

[Rn2 - (sign_ext)imm4 -> Rn2] with opl

This performs the paralell execution of the subtraction of the register (Rm2) from the sign-

extended immediate value (imm4) and the opl operation between the registers (Rm1 and Rnl).

sat16_sub Rm1, Rn1, imm4, Rn2

Same as sat16_sub of the SAT16_OP2 instruction

Assembler mnemonic Note VICIN| Z| Size
add_sub Rm1, Rn1, imm4, Rn2 Same as add_sub of the ADD_OP2 instruction -0 -] - - 4
cmp_sub Rm1, Rn1, imm4, Rn2 Same as cmp_sub of the CMP_OP2 instruction Al Al A|A 4
sub_sub Rm1, Rn1, imm4, Rn2 Same as sub_sub of the SUB_OP2 instruction -] - - 4
mov_sub Rm1, Rn1,imm4, Rn2 |Same as mov_sub of the MOV_OP2 instruction -] - - 4
and_sub Rm1, Rn1, imm4 Rn2 Same as and_sub of the AND_OP2 instruction - -] - - 4
or_sub Rm1, Rn1, imm4, Rn2 Same as or_sub of the OR_OP2 instruction - -] -] - 4
xor_sub Rm1, Rn1, imm4, Rn2 Same as xor_sub of the XOR_OP2 instruction - - - - 4
dmach_sub Rm1,Rn1, imm4, Rn2 |Same as dmach_sub of the DMACH_OP2 instruction| - | - | - | - 4
swhw_sub Rm1, Rn1, imm4, Rn2 [Same as swhw_sub of the SWHW_OP2 instruction | - | - | - | - 4

- - - - 4

Flag change

VF :
CF : No change
NF :
ZF :

No change

No change

No change

CF

ZF

When OP1 is other than the CMP instruction

: "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

: "1" when the operation result is "0"; "0" in all other cases.

When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

(

When the OP1 is not a compare operation (CMP) and Rd1=Rd?2 is specified, the opera-

tion result is undefined.

200 opP1_SUB

Chapter 2 Instruction description

OP1_SUB imm, Rn1, imm, Rn2

Operation

the register (Rnl).

[Rn2 - (sign_ext)imm4* -> Rn2] with opl (* : 3rd operand)

This performs the paralell execution of the subtraction of the register (Rm2) from the sign-

extended first immediate value (imm4) and the opl operation between the immediate value and

Assembler mnemonic Note VICIN|Z | Size
add_sub imm4, Rn1, imm4, Rn2 Same as add_sub of the ADD_OP2 instruction -0 - - - 4
cmp_sub imm4, Rn1, imm4, Rn2 |Same as cmp_sub of the CMP_OP2 instruction Al Al Al A 4
sub_sub imm4, Rn1, imm4, Rn2 [Same as sub_sub of the SUB_OP?2 instruction == -] - 4
mov_sub imm4, Rn1,imm4, Rn2 | Same as mov_sub of the MOV_OP2 instruction -] -] - 4

Flag change
When OP2 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change
When OP2 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.
ZF : "1" when the operation result is "0"; "0" in all other cases.
G When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the operation
= result is undefined.

OP1_SUB

201

Chapter 2 Instruction description

OP1 CMP

son and OP1

Parallel execution of compari-

OP1_CMP Rm1, Rn1, Rm2, Rn2

Operation

[Rn2 - Rm2 : EPSW] with opl

and the opl operation between the registers (Rm1 and Rnl).

This performs the paralell execution of the comparison between the registers (Rm2 and Rn2)

Assembler mnemonic Note VIC|N|Z| Size
add_cmp Rm1, Rn1, Rm2, Rn2 Same as add_cmp of the ADD_OP2 instruction A|A|A|A 4
sub_cmp Rm1, Rn1, Rm2, Rn2 Same as sub_cmp of the SUB_OP2 instruction AlA|A|A 4
mov_cmp Rm1, Rn1, Rm2, Rn2 | Same as mov_cmp of the MOV_OP2 instruction AlA|A|A 4
and_cmp Rm1, Rn1, Rm2, Rn2 Same as and_cmp of the AND_OP2 instruction AlATAIA 4
or_cmp Rm1, Rn1, Rm2, Rn2 Same as or_cmp of the OR_OP2 instruction AlA|A|A 4
xor_cmp Rm1, Rn1, Rm2, Rn2 Same as xor_cmp of the XOR_OP2 instruction AlATALA 4
dmach_cmp Rm1, Rn1, Rm2, Rn2 | Same as dmach_cmp of the DMACH_OPZ2 instruction A | A | A | A 4
swhw_cmp Rm1, Rn1, Rm2, Rn2 | Same as swhw_cmp of the SWHW_OP2 instruction | A |A | A | A 4
sat16_cmp Rm1, Rn1, Rm2, Rn2 |Same as sat16_cmp of the SAT16_OP2 instruction |A |A | A | A 4

Flag change

CF

ZF

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
:"1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

: "1" when the operation result is "0"; "0" in all other cases.

OP1_CMP

imm, Rn1, Rm2, Rn2

Operation

[Rn2 - Rm2 : EPSW] with opl

and the opl operation between the immediate value (imm) and the register (Rnl).

This performs the paralell execution of the comparison between the registers (Rm2 and Rn2)

Assembler mnemonic Note V |C [N |Z| Size
add_cmp imm4, Rn1, Rm2, Rn2 Same as add_cmp of the ADD_OP2 instruction AlA|AA 4
sub_cmp imm4, Rn1, Rm2, Rn2 Same as sub_cmp of the SUB_OP2 instruction A|lA|A|A 4
mov_cmp imm4, Rn1, Rm2, Rn2 | Same as mov_cmp of the MOV_OP2 instruction AlA|A|A 4

Flag change

"1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

VF :

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.
ZF : "1" when the operation result is "0"; "0" in all other cases.

202 opP1_cMmP

Chapter 2 Instruction description

OP1_CMP Rm1, Rn1, imm, Rn2

Operation

[Rn2 - (sign_ext)imm4* : EPSW] with opl

(* : 3rd operand)

This performs the paralell execution of the comparison between the sign-extended immediate

value (imm4) and the register (Rn2) and the opl operation between the registers (Rm1l and

Rnl).

Assembler mnemonic Note VICINI| Z| Size
add_cmp Rm1, Rn1, imm4, Rn2 Same as add_cmp of the ADD_OP2 instruction AlA|A]A 4
sub_cmp Rm1, Rn1, imm4, Rn2 Same as sub_cmp of the SUB_OP2 instruction AlA|A|A 4
mov_cmp Rm1, Rn1,imm4, Rn2 | Same as mov_cmp of the MOV_OP2 instruction AlA|A|A 4
and_cmp Rm1, Rn1, imm4, Rn2 Same as and_cmp of the AND_OP2 instruction AlATAIA 4
or_cmp Rm1, Rn1, imm4, Rn2 Same as or_cmp of the OR_OP2 instruction AlA|A|A 4
xor_cmp Rm1, Rn1, imm4, Rn2 Same as xor_cmp of the XOR_OP2 instruction AlATALA 4
dmach_cmp Rm1, Rn1, imm4,Rn2 | Same as dmach_cmp of the DMACH_OP2 instruction A [A | A | A 4
swhw_cmp Rm1, Rn1, imm4, Rn2 | Same as swhw_cmp of the SWHW_OP2 instruction | A [A | A | A 4
sat16_cmp Rm1, Rn1,imm4, Rn2 |Same as sat16_cmp of the SAT16_OP2 instruction AlA|A|A 4

Flag change

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF

: "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF

: "1" when the operation result is "0"; "0" in all other cases.

OP1_CMP

imm, Rn1, imm, Rn2

Operation

[Rn2 - (sign_ext)imm4* : EPSW] with opl

(* : 3rd operand)

and the opl operation between the immediate value (imm) and the register (Rnl).

This performs the paralell execution of the comparison between the registers (Rm2 and Rn2)

Assembler mnemonic Note V |C|N|Z| Size
add_cmp imm4, Rn1, imm4, Rn2 | Same as add_cmp of the ADD_OP2 instruction AlA|A|A 4
sub_cmp imm4, Rn1, imm4, Rn2 | Same as sub_cmp of the SUB_OP?2 instruction A|lA|IA]A 4
mov_cmp imm4, Rn1, imm4, Rn2 | Same as mov_cmp of the MOV_OP2 instruction AlA|IA|A 4

Flag change
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.
ZF : "1" when the operation result is "0"; "0" in all other cases.
OP1_CMP 203

Chapter 2 Instruction description

OP1 MOV

Parallel execution of transfer
and OP1

OP1_MOV Rm1, Rn1, Rm2, Rn2

Operation [Rm2 -> Rn2] with opl

and the opl operation between the registers (Rm1 and Rnl).

This performs the paralell execution of the transfer of the register (Rm2) to the register (Rn2)

Assembler mnemonic Note V Size
add_mov Rm1, Rn1, Rm2, Rn2 Same as add_mov of the ADD_OP2 instruction - 4
cmp_mov Rm1, Rn1, Rm2, Rn2 Same as cmp_mov of the CMP_OP2 instruction A 4
sub_mov Rm1, Rn1, Rm2, Rn2 Same as sub_mov of the SUB_OP2 instruction - 4
mov_mov Rm1, Rn1, Rm2, Rn2 Same as mov_mov of the MOV_OP2 instruction - 4
and_mov Rm1, Rn1, Rm2, Rn2 Same as and_mov of the AND_OP2 instruction - 4
or_mov Rm1, Rn1, Rm2, Rn2 Same as or_mov of the OR_OP2 instruction - 4
xor_mov Rm1, Rn1, Rm2, Rn2 Same as xor_mov of the XOR_OP2 instruction - 4
dmach_mov Rm1, Rn1, Rm2, Rn2 |Same as dmach_mov of the DMACH_OP2 instruction| - 4
swhw_mov Rm1, Rn1, Rm2, Rn2 |Same as swhw_mov of the SWHW_OP2 instruction | - 4
sat16_mov Rm1, Rn1, Rm2, Rn2 | Same as sat16_mov of the SAT16_OP?2 instruction - 4

Flag change
When OP1 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change
When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.
ZF : "1" when the operation result is "0"; "0" in all other cases.
G When the OP1 is not a compare operation (CMP) and Rd1=Rd?2 is specified, the opera-
= tion result is undefined.

204 opP1_ MOV

Chapter 2 Instruction description

OP1_MOV imm, Rn1, Rm2, Rn2

Operation [Rm2 -> Rn2] with opl

This performs the paralell execution of the transfer of the register (Rm2) to the register (Rn2)
and the opl operation between the registers (Rm1 and Rnl).

Assembler mnemonic Note VICIN|Z | Size
add_mov imm4, Rn1, Rm2, Rn2 Same as add_mov of the ADD_OP2 instruction - - -] - 4
cmp_mov imm4, Rn1, Rm2, Rn2 [Same as cmp_mov of the CMP_OP2 instruction Al Al Al A 4
sub_mov imm4, Rn1,Rm2, Rn2 [Same as sub_mov of the SUB_OP?2 instruction -] - - 4
mov_mov imm4, Rn1, Rm2, Rn2 | Same as mov_mov of the MOV_OP2 instruction -] -] - 4

Flag change

VF
CF
NF

When OP1 is other than the CMP instruction
VF :
CF :
NF :

ZF :
When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

ZF :

No change
No change
No change
No change

: "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
:"1" when borrow to bit 31 occurs; "0" in all other cases.
: "1" when bit 31 of the operation result is "1"; "0" in all other cases.

"1" when the operation result is "0"; "0" in all other cases.

(

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the operation

result is undefined.

OP1 MOV 205

Chapter 2 Instruction description

OP1_MOV Rm1, Rn1, imm, Rn2

Operation

[(sign_ext)imm4* -> Rn2] with opl

(* : 3rd operand)

(imm4) to the register (Rn2) and the opl operation between the registers (Rm1 and Rnl).

This performs the paralell execution of the transfer of the sign-extended immediate value

sat16_mov Rm1, Rn1, imm4, Rn2

Assembler mnemonic Note VIC|NI| Z| Size
add_mov Rm1, Rn1, imm4, Rn2 Same as add_mov of the ADD_OP2 instruction N B 4
cmp_mov Rm1, Rn1,imm4, Rn2 [Same as cmp_mov of the CMP_OP2 instruction Al AIA]A 4
sub_mov Rm1, Rn1,imm4, Rn2 [Same as sub_mov of the SUB_OP?2 instruction S 4
mov_mov Rm1, Rn1,imm4, Rn2 [Same as mov_mov of the MOV_OP2 instruction S A 4
and_mov Rm1, Rn1, imm4, Rn2 Same as and_mov of the AND_OP2 instruction I I R 4
or_mov Rm1, Rn1, imm4, Rn2 Same as or_mov of the OR_OP?2 instruction I 4
xor_mov Rm1, Rn1, imm4, Rn2 Same as xor_mov of the XOR_OP2 instruction R N I 4
dmach_mov Rm1, Rn1,imm4,Rn2 |Same as dmach_mov of the DMACH_OP2 instruction| - | - | - | - 4
swhw_mov Rm1, Rn1, imm4, Rn2 |Same as swhw_mov of the SWHW_OP2 instruction | - | - | - | - 4

Same as sat16_mov of the SAT16_OP2 instruction | - | - | - | - 4

Flag change

VF :
CF :
NF :
ZF :

No change
No change
No change
No change

CF

ZF

When OP1 is other than the CMP instruction

:"1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

: "1" when the operation result is "0"; "0" in all other cases.

When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

(

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
tion result is undefined.

206 opP1_ MOV

Chapter 2 Instruction description

OP1_MOV imm, Rn1, imm, Rn2

Operation [(sign_ext)imm4* -> Rn2] with opl (* : 3rd operand)
This performs the paralell execution of the transfer of the sign-extended third-operand immedi-
ate value (imm4) to the register (Rn2) and the opl operation between the immediate value
(imm) and the register (Rnl).

Assembler mnemonic Note VICIN|Z | Size
add_mov imm4, Rn1, imm4, Rn2 | Same as add_mov of the ADD_OP2 instruction - - -] -
cmp_mov imm4, Rn1, imm4, Rn2 [Same as cmp_mov of the CMP_OP2 instruction Al Al Al A 4
sub_mov imm4, Rn1,imm4, Rn2 [Same as sub_mov of the SUB_OP?2 instruction == -] - 4
mov_mov imm4, Rn1,imm4, Rn2 | Same as mov_mov of the MOV_OP2 instruction -] -] - 4

Flag change

When OP1 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

G When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the operation

result is undefined.

OP1 MOV 207

Chapter 2 Instruction description

OP1 ASR

metic shift right and OP1

Parallel execution of arith-

OP1_ASR Rm1, Rn1, Rm2, Rn2

Operation

[(Rn2 >> Rm2) -> Rn2] with opl

This performs the paralell execution of the arithmetic right shift of the register (Rn2) by the
lower-5-bit values of the register (Rm2) and the op1 operation between the registers (Rm1 and

sat16_asr Rm1, Rn1, Rm2, Rn2

Rnl).

Assembler mnemonic Note VICIN| Z| Size
add_asr Rm1, Rn1, Rm2, Rn2 Same as add_asr of the ADD_OP2 instruction N 4
cmp_asr Rm1, Rn1, Rm2, Rn2 Same as cmp_asr of the CMP_OP2 instruction Al AlA] A 4
sub_asr Rm1, Rn1, Rm2, Rn2 Same as sub_asr of the SUB_OP2 instruction S I R 4
mov_asr Rm1, Rn1, Rm2, Rn2 Same as mov_asr of the MOV_OP2 instruction S I 4
and_asr Rm1, Rn1, Rm2, Rn2 Same as and_asr of the AND_OP2 instruction I 4
or_asr Rm1, Rn1, Rm2, Rn2 Same as or_asr of the OR_OP2 instruction - R I 4
xor_asr Rm1, Rn1, Rm2, Rn2 Same as xor_asr of the XOR_OP2 instruction - [I 4
dmach_asr Rm1, Rn1, Rm2, Rn2 |Same as dmach_asr of the DMACH_OP2 instruction | - | - | - | - 4
swhw_asr Rm1, Rn1, Rm2, Rn2 Same as swhw_asr of the SWHW_OP2 instruction - -] - - 4

Same as sat16_asr of the SAT16_OP2 instruction - -] - - 4

Flag change

VF :
CF:
NF :
ZF :

No change
No change
No change
No change

When OP1 is other than the CMP instruction

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

(1

When the OP1 is not a compare operation (CMP) and Rd1=Rd?2 is specified, the opera-
tion result is undefined.

208 O0P1_ASR

Chapter 2 Instruction description

OP1_ASR imm, Rn1, Rm2, Rn2

Operation [(Rn2 >> Rm2) -> Rn2] with opl

This performs the paralell execution of the arithmetic right shift of the register (Rn2) by the
lower-5-bit values of the register (Rm2) and the opl operation between the registers (Rm1 and

Rnl).

Assembler mnemonic Note VICIN|Z | Size
add_asr imm4, Rn1, Rm2, Rn2 Same as add_asr of the ADD_OP2 instruction -0 - - - 4
cmp_asr imm4, Rn1, Rm2, Rn2 Same as cmp_asr of the CMP_OP2 instruction Al Al Al A 4
sub_asr imm4, Rn1, Rm2, Rn2 Same as sub_asr of the SUB_OP2 instruction -] - - 4
mov_asr imm4, Rn1, Rm2, Rn2 Same as mov_asr of the MOV_OP2 instruction -] -] - 4

Flag change

VF
CF
NF

When OP1 is other than the CMP instruction
VF :
CF :
NF :

ZF :
When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

ZF :

No change
No change
No change
No change

: "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
:"1" when borrow to bit 31 occurs; "0" in all other cases.
: "1" when bit 31 of the operation result is "1"; "0" in all other cases.

"1" when the operation result is "0"; "0" in all other cases.

(

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the operation

result is undefined.

OP1_ASR 209

Chapter 2 Instruction description

OP1_ASR Rm1, Rn1, imm, Rn2

Operation

[(sign_ext)imm4* -> Rn2] with opl

(* : 3rd operand)

This performs the paralell execution of the arithmetic right shift of the register (Rn2) by the
lower-5-bit values of the register (Rm2) and the opl operation between the registers (Rm1 and

sat16_asr Rm1, Rn1, imm4, Rn2

Rnl).

Assembler mnemonic Note VIC|NI| Z| Size
add_asr Rm1, Rn1, imm4, Rn2 Same as add_asr of the ADD_OP2 instruction N B 4
cmp_asr Rm1, Rn1, imm4, Rn2 Same as cmp_asr of the CMP_OP2 instruction Al AIA]A 4
sub_asr Rm1, Rn1, imm4, Rn2 Same as sub_asr of the SUB_OP2 instruction S 4
mov_asr Rm1, Rn1, imm4, Rn2 Same as mov_asr of the MOV_OP2 instruction R 4
and_asr Rm1, Rn1, imm4, Rn2 Same as and_asr of the AND_OP2 instruction I I R 4
or_asr Rm1, Rn1, imm4, Rn2 Same as or_asr of the OR_OP2 instruction I 4
xor_asr Rm1, Rn1, imm4, Rn2 Same as xor_asr of the XOR_OP2 instruction R N I 4
dmach_asr Rm1, Rn1, imm4, Rn2 |Same as dmach_asr of the DMACH_OP2 instruction | - | - | - | - 4
swhw_asr Rm1, Rn1,imm4, Rn2 |Same as swhw_asr of the SWHW_OP2 instruction S I 4

Same as sat16_asr of the SAT16_OP2 instruction - 4

Flag change

VF :
CF :
NF :
ZF :

No change
No change
No change
No change

When OP1 is other than the CMP instruction

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

(1

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
tion result is undefined.

210 OP1_ASR

Chapter 2 Instruction description

OP1_ASR imm, Rn1, imm, Rn2

Operation [(Rn2 >> (sign_ext)imm4* -> Rn2] with opl (* : 3rd operand)

This performs the paralell execution of the arithmetic right shift of the register (Rn2) by the

lower-5-bit values of the register (Rm2) and the opl operation between the registers (Rm1 and

Rnl).

Assembler mnemonic Note V|ICIN|Z| Size
add_asr imm4, Rn1, imm4, Rn2 Same as add_asr of the ADD_OP2 instruction -0 -] -] - 4
cmp_asr imm4, Rn1, imm4, Rn2 Same as cmp_asr of the CMP_OP2 instruction Al Al Al A 4
sub_asr imm4, Rn1, imm4, Rn2 Same as sub_asr of the SUB_OP2 instruction -l -] - 4
mov_asr imm4, Rn1,imm4, Rn2 [Same as mov_asr of the MOV_OP2 instruction -] -] - 4

Flag change

When OP1 is other than the CMP instruction
VF :
CF :
NF :

ZF :
When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF
CF
NF

ZF :

No change
No change
No change
No change

: "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
:"1" when borrow to bit 31 occurs; "0" in all other cases.
: "1" when bit 31 of the operation result is "1"; "0" in all other cases.

"1" when the operation result is "0"; "0" in all other cases.

(

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the operation

result is undefined.

OP1 ASR 211

Chapter 2 Instruction description

OPI LSR

shift right and OP1

Parallel execution of logical

OP1 LSR Rm1, Rn1, Rm2, Rn2

Operation

[(Rn2 >> Rm2) -> Rn2] with opl

This performs the paralell execution of the logical right shift of the register (Rn2) by the lower-
5-bit values of the register (Rm2) and the opl operation between the registers (Rm1 and Rnl).

sat16_Isr Rm1, Rn1, Rm2, Rn2

Assembler mnemonic Note VIC|NI| Z| Size
add_Isr Rm1, Rn1, Rm2, Rn2 Same as add_lIsr of the ADD_OP2 instruction - [I 4
cmp_Isr Rm1, Rn1, Rm2, Rn2 Same as cmp_lsr of the CMP_OP2 instruction Al AlA] A 4
sub_Isr Rm1, Rn1, Rm2, Rn2 Same as sub_|sr of the SUB_OP2 instruction S I R 4
mov_lsr Rm1, Rn1, Rm2, Rn2 Same as mov_|Isr of the MOV_OP2 instruction S I I 4
and_Isr Rm1, Rn1, Rm2, Rn2 Same as and_lIsr of the AND_OP2 instruction I I 4
or_Isr Rm1, Rn1, Rm2, Rn2 Same as or_lsr of the OR_OP2 instruction I R 4
xor_Isr Rm1, Rn1, Rm2, Rn2 Same as xor_lIsr of the XOR_OP2 instruction _ [I 4
dmach_Isr Rm1, Rn1, Rm2, Rn2 Same as dmach_lIsr of the DMACH_OP2 instruction | - | - | - | - 4
swhw_Isr Rm1, Rn1, Rm2, Rn2 Same as swhw_lIsr of the SWHW_OP?2 instruction - -] - - 4

Same as sat16_Isr of the SAT16_OP2 instruction - -] - - 4

Flag change

When OP1 is other than the CMP
VF :
CF :
NF :
ZF :

No change
No change
No change
No change

instruction

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

(1

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
tion result is undefined.

212 OP1_LSR

Chapter 2 Instruction description

OP1 _LSR imm, Rn1, Rm2, Rn2

Operation [(Rn2 >> Rm2) -> Rn2] with opl

This performs the paralell execution of the logical right shift of the register (Rn2) by the lower-
5-bit values of the register (Rm2) and the opl operation between the registers (Rm1 and Rnl).

Assembler mnemonic Note VICIN|Z | Size
add_lIsr imm4, Rn1, Rm2, Rn2 Same as add_lIsr of the ADD_OP2 instruction - - -] - 4
cmp_Isr imm4, Rn1, Rm2, Rn2 Same as cmp_lsr of the CMP_OP2 instruction Al Al Al A 4
sub_lsr imm4, Rn1, Rm2, Rn2 Same as sub_|sr of the SUB_OP2 instruction == -] - 4
mov_lIsr imm4, Rn1, Rm2, Rn2 Same as mov_Isr of the MOV_OP2 instruction -] -] - 4

Flag change

VF
CF
NF

When OP1 is other than the CMP instruction
VF :
CF :
NF :

ZF :
When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

ZF :

No change
No change
No change
No change

: "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
:"1" when borrow to bit 31 occurs; "0" in all other cases.
: "1" when bit 31 of the operation result is "1"; "0" in all other cases.

"1" when the operation result is "0"; "0" in all other cases.

(

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the operation

result is undefined.

OP1 LSR 213

Chapter 2 Instruction description

OP1 _LSR Rm1, Rn1, imm, Rn2

Operation

[(Rn2 >> (zero_ext)imm4*) -> Rn2] with opl

(*: 3rd operand)

This performs the paralell execution of the logical right shift of the register (Rn2) by the lower-
5-bit values of the register (Rm2) and the opl operation between the registers (Rm1 and Rnl).

sat16_Isr Rm1, Rn1, imm4, Rn2

Assembler mnemonic Note VIC|NI| Z| Size
add_Isr Rm1, Rn1, imm4, Rn2 Same as add_lIsr of the ADD_OP2 instruction - [I 4
cmp_Isr Rm1, Rn1, imm4, Rn2 Same as cmp_lsr of the CMP_OP2 instruction Al AIA]A 4
sub_Isr Rm1, Rn1, imm4, Rn2 Same as sub_|sr of the SUB_OP2 instruction S I R 4
mov_Isr Rm1, Rn1, imm4, Rn2 Same as mov_lsr of the MOV_OP?2 instruction I 4
and_Isr Rm1, Rn1, imm4, Rn2 Same as and_Isr of the AND_OP2 instruction I I R 4
or_Isr Rm1, Rn1, imm4, Rn2 Same as or_lIsr of the OR_OP2 instruction - [I 4
xor_Isr Rm1, Rn1, imm4, Rn2 Same as xor_Isr of the XOR_OP2 instruction [R N 4
dmach_Isr Rm1, Rn1,imm4, Rn2 |Same as dmach_lsr of the DMACH_OP2 instruction | - | - | - | - 4
swhw_Isr Rm1, Rn1,imm4, Rn2 | Same as swhw_Isr of the SWHW_OP2 instruction S 4

Same as sat16_lIsr of the SAT16_OP2 instruction - -1 -] - 4

Flag change

When OP1 is other than the CMP
VF :
CF :
NF :
ZF :

No change
No change
No change
No change

instruction

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

(1

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
tion result is undefined.

214 oOP1_LSR

Chapter 2 Instruction description

OP1 _LSR imm, Rn1, imm, Rn2

Operation [(Rn2 >> (zero_ext) imm4* -> Rn2] with opl (* : 3rd operand)

This performs the paralell execution of the logical right shift of the register (Rn2) by the lower-
5-bit values of the register (Rm2) and the opl operation between the registers (Rm1 and Rnl).

Assembler mnemonic Note VICIN|Z | Size
add_lIsr imm4, Rn1, imm4, Rn2 Same as add_lIsr of the ADD_OP2 instruction - - -] - 4
cmp_lIsr imm4, Rn1, imm4, Rn2 Same as cmp_lsr of the CMP_OP2 instruction Al Al Al A 4
sub_lsr imm4, Rn1, imm4, Rn2 Same as sub_|sr of the SUB_OP2 instruction == -] - 4
mov_lIsr imm4, Rn1, imm4, Rn2 Same as mov_Isr of the MOV_OP2 instruction -] -] - 4

Flag change

VF
CF
NF

When OP1 is other than the CMP instruction
VF :
CF :
NF :

ZF :
When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

ZF :

No change
No change
No change
No change

: "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
:"1" when borrow to bit 31 occurs; "0" in all other cases.
: "1" when bit 31 of the operation result is "1"; "0" in all other cases.

"1" when the operation result is "0"; "0" in all other cases.

(

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the operation

result is undefined.

OP1 LSR 215

Chapter 2 Instruction description

OP1 ASL

metic shift left and OP1

Parallel execution of arith-

OP1_ASL Rm1, Rn1, Rm2, Rn2

Operation

Rnl).

[(Rn2 << Rm2) -> Rn2] with opl

This performs the paralell execution of the arithmetic left shift of the register (Rn2) by the
lower-5-bit values of the register (Rm2) and the opl operation between the registers (Rm1 and

Assembler mnemonic

Note

\Y

C

N

Z

Size

add_asl Rm1, Rn1, Rm2, Rn2

Same as add_asl of the ADD_OP2 instruction

cmp_asl Rm1, Rn1, Rm2, Rn2

Same as cmp_asl of the CMP_OP2 instruction

sub_asl Rm1, Rn1, Rm2, Rn2

Same as sub_asl of the SUB_OP2 instruction

mov_asl Rm1, Rn1, Rm2, Rn2

Same as mov_asl of the MOV_OP2 instruction

and_asl Rm1, Rn1, Rm2, Rn2

Same as and_asl of the AND_OP2 instruction

or_asl Rm1, Rn1, Rm2, Rn2

Same as or_asl of the OR_OP2 instruction

xor_asl Rm1, Rn1, Rm2, Rn2

Same as xor_asl of the XOR_OP2 instruction

dmach_asl Rm1, Rn1, Rm2, Rn2

Same as dmach_asl of the DMACH_OP2 instruction

swhw_asl Rm1, Rn1, Rm2, Rn2

Same as swhw_asl of the SWHW_OP2 instruction

sat16_asl Rm1, Rn1, Rm2, Rn2

Same as sat16_asl of the SAT16_OP2 instruction

N R R EAE RS

Flag change

VF : No change
CF : No change
NF : No change
ZF : No change

When OP1 is other than the CMP instruction

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

G When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
= tion result is undefined.

216 OP1_ASL

Chapter 2 Instruction description

OP1_ASL

imm, Rn1, Rm2, Rn2

Operation

[(Rn2 << Rm2) -> Rn2] with opl

This performs the paralell execution of the arithmetic left shift of the register (Rn2) by the

lower-5-bit values of the register (Rm2) and the opl operation between the registers (Rm1 and

ZF

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

: "1" when the operation result is "0"; "0" in all other cases.

Rnl).

Assembler mnemonic Note VICIN|Z | Size
add_asl imm4, Rn1, Rm2, Rn2 Same as add_asl of the ADD_OP2 instruction - - -] -
cmp_asl imm4, Rn1, Rm2, Rn2 Same as cmp_asl of the CMP_OP2 instruction Al Al Al A 4
sub_asl imm4, Rn1, Rm2, Rn2 Same as sub_asl of the SUB_OP2 instruction == -] - 4
mov_asl imm4, Rn1, Rm2, Rn2 Same as mov_asl of the MOV_OP2 instruction -] -] - 4

Flag change
When OP1 is other than the CMP instruction
VF : No change
CF : No change
NF : No change
ZF : No change
When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

(

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the operation

result is undefined.

OP1 ASL 217

Chapter 2 Instruction description

OP1_ASL Rm1, Rn1, imm, Rn2

Operation

(Rm1 and Rnl).

[(Rn2 << (zero_ext)imm4* -> Rn2] with opl

(*:3rd operand)

This performs the paralell execution of the arithmetic left shift of the register (Rn2) by the

lower-5-bit values of the immediate value (imm4) and the opl operation between the registers

sat16_asl Rm1, Rn1, imm4, Rn2

Assembler mnemonic Note VIC|NI| Z| Size
add_asl Rm1, Rn1, imm4, Rn2 Same as add_asl of the ADD_OP2 instruction - [I 4
cmp_asl Rm1, Rn1, imm4, Rn2 Same as cmp_asl of the CMP_OP2 instruction Al AIA]A 4
sub_asl Rm1, Rn1, imm4, Rn2 Same as sub_asl of the SUB_OP2 instruction S I R 4
mov_asl Rm1, Rn1, imm4, Rn2 Same as mov_asl of the MOV_OP?2 instruction I 4
and_asl Rm1, Rn1, imm4, Rn2 Same as and_asl of the AND_OP2 instruction I I R 4
or_asl Rm1, Rn1, imm4, Rn2 Same as or_asl of the OR_OP2 instruction - [I 4
xor_asl Rm1, Rn1, imm4, Rn2 Same as xor_asl of the XOR_OP2 instruction R N I 4
dmach_asl Rm1, Rn1, imm4, Rn2 |Same as dmach_asl of the DMACH_OP2 instruction | - | - | - | - 4
swhw_asl Rm1, Rn1,imm4, Rn2 | Same as swhw_asl of the SWHW_OP2 instruction S 4

Same as sat16_asl of the SAT16_OP2 instruction - -1 -] - 4

Flag change

VF :
CF:
NF :
ZF :

No change
No change
No change
No change

CF

ZF

When OP1 is other than the CMP instruction

VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.
:"1" when borrow to bit 31 occurs; "0" in all other cases.
NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

: "1" when the operation result is "0"; "0" in all other cases.

When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)

(

When the OP1 is not a compare operation (CMP) and Rd1=Rd2 is specified, the opera-
tion result is undefined.

218 o0P1_ASL

Chapter 2 Instruction description

OP1_ASL imm, Rn1, imm, Rn2

Operation [(Rn2 << (zero_ext)imm4* -> Rn2] with opl (*:3rd operand)
This performs the paralell execution of the arithmetic left shift of the register (Rn2) by the
lower-5-bit values of the third-operand immediate value (imm4) and the opl operation between
the immediate value (imm) and the register (Rnl).

Assembler mnemonic Note VICIN|Z | Size
add_asl imm4, Rn1, imm4, Rn2 Same as add_asl of the ADD_OP2 instruction -0 - - - 4
cmp_asl imm4, Rn1, imm4, Rn2 Same as cmp_asl of the CMP_OP2 instruction Al Al Al A 4
sub_asl imm4, Rn1, imm4, Rn2 Same as sub_asl of the SUB_OP2 instruction == -] - 4
mov_asl imm4, Rn1, imm4, Rn2 Same as mov_asl of the MOV_OP2 instruction -] -] - 4

Flag change

When OP1 is other than the CMP instruction

VF : No change

CF : No change

NF : No change

ZF : No change

When OP1 is the CMP instruction (The flag change is according to the result of the CMP instruction.)
VF : "1" when overflow occurs as a 32-bit signed number; "0" in all ther cases.

CF : "1" when borrow to bit 31 occurs; "0" in all other cases.

NF : "1" when bit 31 of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

OP1 ASL 219

Chapter 2 Instruction description

MO l Parallel execution of transfer and
' c c loop-dedicated conditional branch

MOV _Lcc

(Rm+, imm), Rn

Operation

This instruction is a combination instruction of MOV (Rm+), Rn operation and LCC

operation.

MOV (Rm+), Rn instruction
mem32(Rm) -> Rn
Rm+ 4 ->Rm
The data indicated by the register (Rm) is loaded from the memory (Mem), and
is stored in Rn. Moreover, the register (Rm) and "4" are added to each other,

and the result is stored in the register (Rm).

Lcc instruction
Lcce is used together with STLB in order to increase the loop execution speed,
and performs conditional branch to the top of the loop set by SETLB.
The types of condition codes (CC) are listed below.

cc Conditions Meaning

eq Z Branch when Z =1 or Z flag set

ne ~Z Branch when not Z =1 or Z flag cleared
gt ~(Zor (N"V)) Branch when < (signed)

ge ~(N"V) Branch when <(signed)

le Z or (N *V) Branch when 2 (signed)

It N~V Branch when > (signed)

hi ~(Cor 2) Branch when < (signed)

cc ~C Branch when < or C flag cleared (unsigned)
Is CorZ Branch when > (unsigned)

cs C Branch when > or C flag set (unsigned)
ra None Always branch

When branch is taken
LAR -4 -> nPC (the next instruction PC)

The instruction loaded to the loop instruction register (LIR) is executed and instruc-
tion fetch starts for the address loaded to the loop address register (LAR).

At the same time, 4 is subtracted from the loop address register (LAR) and the result
is written into the PC.
Even if the addition result overflows, this overflow is ignored and the result is written
into the PC.

Lcc is not coordinated with SETLB, execution cannot be assured.

When branch is not taken
PC (Self-instruction address) + CodeSize -> nPC (Next instruction PC)

The next instruction is executed.

220 MOV _LCcC

Chapter 2 Instruction description

Assembler mnemonic

Note

N| Z| Size

mov_

leqg (Rm+,imm4), Rn

imm4 is sign-extended.

1
1
N

mov_

Ine (Rm+,imm4), Rn

imm4 is sign-extended.

mov_

Igt (Rm+,imm4), Rn

imm4 is sign-extended.

mov_

Ige (Rm+,imm4), Rn

imm4 is sign-extended.

mov_|

lle (Rm+,imm4), Rn

imm4 is sign-extended.

mov_|

It (Rm+, imm4), Rn

imm4 is sign-extended.

mov_|

Ihi (Rm+, imm4), Rn

imm4 is sign-extended.

mov_

lcc (Rm+,imm4), Rn

imm4 is sign-extended.

mov_|

lls (Rm+, imm4), Rn

imm4 is sign-extended.

mov_

lcs (Rm+,imm4), Rn

imm4 is sign-extended.

1
1
N N N R R R

mov_Ira (Rm+,imm4), Rn

imm4 is sign-extended.

Flag change

NF

VF :
CF :

ZF :

No change
No change
: No change
No change

When Rd1=Rd2 is specified, the operation result is undefined.

MOV LcC 221

Chapter 2 Instruction description

l]DFoo Signed multiplication instruction

UDFO0 Dm, Dn (MULQ Dm, Dn)

Operation Dm * Dn -> {MDRQ , Dn}

of the 64-bit result in the MDRQ and the lower 32 bits in the Dn.

The instruction multiplies the contents of the signed 32-bit integer register (Dm: multiplicand) by

the contents of the signed 32-bit integer register (Dn: multiplier), and then stores the upper 32 bits

Assembler mnemonic Note V |C |IN

Size

udf00 Dm, Dn 2092 1A

Flag change

VF : Undefined.
CF : Undefined.

ZF : "1" when the lower 32 bits of the operation result is "0"; "0" in all other cases.

NF : "1" when the MSB of the lower 32 bits of the operation result is "1"; "0" in all other cases.

UDFOO imm,Dn (MULQ imm, Dn)

Operation imm * Dn -> {MDRQ , Dn}

upper 32 bits of the 64-bit result in the MDRQ and the lower 32 bits in the Dn.

The instruction multiplies the contents of the 32-bit sign-extended immediate value (imm: multi-

plicand) by the contents of the signed 32-bit integer register (Dn: multiplier), and then stores the

This instruction performs quick multiplication using the multiplier in the extension function

unit.

Assembler mnemonic Note VIC |N |z | Size
udf00 imm8, Dn imm8 is sign-extended. 2121alal 3
udf00 imm16, Dn imm16 is sign-extended. 21?2 1A A 4
udf00 imm32, Dn 21?2 1A A 6

Flag change

VF : Undefined.

CF : Undefined.

NF : "1" when the MSB of the lower 32 bits of the operation result is "1"; "0" in all other cases.
ZF : "1" when the lower 32 bits of the operation result is "0"; "0" in all other cases.

222 UDF00

Chapter 2 Instruction description

I]DFOI Unsigned multiplication instruction

UDFO1 Dm, Dn (MULQU Dm, Dn)

Operation Dm * Dn -> {MDRQ , Dn}

The instruction multiplies the contents of the unsigned 32-bit integer register (Dm: multiplicand)
by the contents of the unsigned 32-bit integer register (Dn: multiplier), and then stores the upper
32 bits of the 64-bit result in the MDRQ and the lower 32 bits in the Dn.
This instruction performs quick multiplication using the multiplier in the extension function

unit.
Assembler mnemonic Note V|C [N |zZ| Size
udf01 Dm, Dn 21?2 A A 2

Flag change

VF : Undefined.
CF : Undefined.

NF : "1" when the MSB of the lower 32 bits of the operation result is "1"; "0" in all other cases.

ZF : "1" when the lower 32 bits of the operation result is "0"; "0" in all other cases.

UDFUO1 imm, Dn (MULQU

imm, Dn)

Operation imm * Dn -> {MDRQ , Dn}

The instruction multiplies the contents of the 32-bit zero-extended immediate value (imm: multi-
plicand) by the contents of the unsigned 32-bit integer register (Dn: multiplier), and then stores
the upper 32 bits of the 64-bit result in the MDRQ and the lower 32 bits in the Dn.

This instruction performs quick multiplication using the multiplier in the extension function

unit.

Assembler mnemonic Note VIC [N |Z | Size
udfu01 imm8, Dn imm8 is zero-extended. 212 1ATlA 3
udfu01 imm16, Dn imm16 is zero-extended. 21?2 |1A|A 4
udfu01 imm32, Dn 21?2 |1A|A 6

Flag change
VF : Undefined.
CF : Undefined.
NF : "1" when the MSB of the lower 32 bits of the operation result is "1"; "0" in all other cases.
ZF : "1" when the lower 32 bits of the operation result is "0"; "0" in all other cases.
UDFO1 223

Chapter 2 Instruction description

‘ /DI 02 Instruction of the saturation operation

for the multiply-and-accumulate result

UDF02 Dm, Dn (MCST32, MCST16, MCSTS)

Operation

This instruction sets the contents of the multiply-and-accumulate operation overflow detect
register MCVF into the V flag. In addition, depending on the value of Dm, the following

operations are performed.

When the value of Dm is 32 (0x00000020)

(1) When the 64-bit result of the multiply-and-accumulate operation that is stored in the
multiply-and-accumulate registers MCRH and MCRL is equal to or greater than the maxi-
mum positive value for a 32-bit signed number (0x000000007FFFFFFF), the maximum
positive value (Ox7FFFFFFF) is stored in Dn.

O0x7FFFFFFF -> Dn

(2) If the value stored in the multiply-and-accumulate registers MCRH and MCRL is equal
to or less than the maximum negative value for a 32-bit signed number
(0OxFFFFFFFF80000000), the maximum negative value (0x80000000) is stored in Dn.
0x80000000 ->Dn

(3) In all other cases, the contents of MCRL are stored in Dn.

MCRL ->Dn

When the value of Dm is 16 (0x00000010)

(1) When the 64-bit result of the multiply-and-accumulate operation that is stored in the
multiply-and-accumulate registers MCRH and MCRL is equal to or greater than the maxi-
mum positive value for a 16-bit signed number (0x0000000000007FFF), the maximum
positive value (0x00007FFF) is stored in Dn.

0x00007FFF -> Dn

(2) If the value stored in the multiply-and-accumulate registers MCRH and MCRL is equal
to or less than the maximum negative value for a 16-bit signed number
(OxFFFFFFFFFFFF8000), the maximum negative value (0xFFFF8000) is stored in Dn.
0x80000000 -> Dn

(3) In all other cases, the contents of MCRL are stored in Dn.

MCRL -> Dn

When the value of Dm is 8 (0x00000008)

(1) When the 32-bit result of the multiply-and-accumulate operation that is stored in the
multiply-and-accumulate register MCRL is equal to or greater than the maximum positive
value for an 8-bit signed number (0x0000007F), the maximum positive value (0x7F) is
stored in Dn.

0x7F -> Dn

(2) If the value stored in the multiply-and-accumulate register MCRL is equal to or less
than the maximum negative value for an 8-bit signed number (OxFFFFFF80), the maximum

negative value (0x80) is stored in Dn.

When the value of Dm is any other value
The value in Dn is undefined.

224 UDF02

Chapter 2 Instruction description

Assembler mnemonic Note VIC N |z | Size
udf02 Dm, Dn When multiply-and-accumulate operation overflow was o0 |?]|? 2
not detected (MCVF = 0)
When multiply-and-accumulate operation overflow was 110 7?2 7?

detected (MCVF = 1)

Flag change

When multiply-and-accumulate operation overflow was not detected
VF: This is "0" and indicates that the multiply-and-accumulate operation is valid.
CF: Always “0”
NF: Undefined
ZF: Undefined
When multiply-and-accumulate operation overflow was detected (MCVF = 1)
VF: This is "1" and indicates that the multiply-and-accumulate operation is invalid.
CF: Always “0”
NF: Undefined
ZF: Undefined

UDF02 225

Chapter 2 Instruction description

‘ /DI 03 Instruction of the saturation operation

for the multiply-and-accumulate result

UDF03 Dm, Dn (MCST9 Dn)

Operation This instruction sets the contents of the multiply-and-accumulate operation overflow detect
register MCVF into the V flag. In addition, depending on the value of Dm, the following

operations are performed.

(1) When the 32-bit result of the multiply-and-accumulate operation that is stored in the
multiply-and-accumulate register MCRL is equal to or greater than the maximum positive
value for a 9-bit signed number (0x000000FF), the maximum positive value (0xFF) is
stored in Dn.
0xFF -> Dn
(2) If the value stored in the multiply-and-accumulate register MCRL is equal to or less
than the maximum negative value for a 8-bit signed number (0x00000000), the maximum
negative value (0x00) is stored in Dn.
0x00000000 ->Dn
(3) In all other cases, the contents of MCRL are stored in Dn.

MCRL -> Dn
Assembler mnemonic Note V |C N |z | Size
udf03 Dm, Dn When multiply-and-accumulate operation overflow was 0|0 ?2]7? 2
not detected (MCVF = 0)
When multiply-and-accumulate operation overflow was 110 2] ?
detected (MCVF = 1)

Flag change

When multiply-and-accumulate operation overflow was not detected
VF: This is "0" and indicates that the multiply-and-accumulate operation is valid.
CF: Always “0”
NF: Undefined
ZF: Undefined
When multiply-and-accumulate operation overflow was detected (MCVF = 1)
VF: This is "1" and indicates that the multiply-and-accumulate operation is invalid.
CF: Always “0”
NF: Undefined
ZF: Undefined

226 UDFO03

Chapter 2 Instruction description

l]DF04 Instruction of the 16-bit saturation

operation
UDF04 Dm, Dn (SAT16 Dm, Dn)

Operation (1) When the register Dm is equal to or greater than the maximum positive value for a 16-bit
signed number (0x00007FFF)
0x00007FFF -> Dn
(2) When the register Dm is equal to or less than the maximum negative value for a 16-bit signed
number (0xFFFF8000)
0xFFFF8000 -> Dn
In all other cases,
Dm -> Dn
(1) When the register Dm is equal to or greater than the maximum positive value for a 16-bit
signed number (0x00007FFF), the maximum positive value (0x00007FFF) is stored in the register Dn.
(2) When the register Dm is equal to or less than the maximum negative value for a 16-bit signed
number (0xFFFF8000), the maximum negative value (OXFFFF8000) is stored in the register Dn.
In all other cases, the contents of the register Dm are stored in the register Dn.

Assembler mnemonic Note V|C [N |zZ| Size
udfo4 Dm, Dn 2121 A1A| 2

Flag change

VF : Undefined.
CF : Undefined.
NF : "1" when the MSB of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0", "0" in all other cases.

UDFo4 227

Chapter 2 Instruction description

l]DF05 Instruction of the 24-bit saturation

operation

UDF05 Dm, Dn (SAT24 Dm, Dn)

Operation

(1) When the register Dm is equal to or greater than the maximum positive value for a 24-bit
signed number (0x007FFFFF)

0x007FFFFF -> Dn

(2) When the register Dm is equal to or less than the maximum negative value for a 16-bit signed
number (0xFFFF8000)

0xFF800000 -> Dn

In all other cases,

Dm -> Dn

(1) When the register Dm is equal to or greater than the maximum positive value for a 16-bit
signed number (0x007FFFFF), the maximum positive value (0x007FFFFF) is stored in the register Dn.
(2) When the register Dm is equal to or less than the maximum negative value for a 16-bit signed
number (0xFF800000), the maximum negative value (0xFF800000)is stored in the register Dn.

In all other cases, the contents of the register Dm are stored in the register Dn.

Assembler mnemonic Note V|C [N |z | Size

udf05 Dm, Dn 20?2(A|A] 2

Flag change

NF : "1"
ZF . "1"

VF : Undefined.
CF : Undefined.

when the MSB of the operation result is "1"; "0" in all other cases.

when the operation result is "0", "0" in all other cases.

228 UDF05

Chapter 2 Instruction description

L Dl 06 Instruction of the saturation operation

for the multiply-and-accumulate result

UDF06 Dm, Dn (MCST48 Dn)

Operation This instruction sets the contents of the multiply-and-accumulate operation overflow detect
register MCVF into the V flag.

(1) When the 64-bit result of the multiply-and-accumulate operation that is stored in the
multiply-and-accumulate register MCRH and MCRL is equal to or greater than the maxi-
mum positive value for a 48-bit signed number (0x00007FFFFFFFFFFF), the maximum
positive value (0x00007FFFFFFFFFFF) is output and bits 47 through bits 16 of that output
are stored in Dn.

O0x7FFFFFFF -> Dn
(2) If the value stored in the multiply-and-accumulate registers MCRH and MCRL is equal
to or less than the maximum negative value for a 48-bit signed number
(0OxFFFF800000000000), the maximum negative value (OxFFFF800000000000) is output
and bits 47 through bits 16 of that output are stored in Dn.
0x80000000 -> Dn
(3) In all other cases, the contents of MCRH[31:0] and MCRL[31:0] are output and bits 47
through bits 16 of that output are stored in Dn.

{ MCRH[15:0], MCRL[31:16] } -> Dn[31:0]

Assembler mnemonic Note VIC N |z | Size
udf06 Dm, Dn When multiply-and-accumulate operation overflow was o0 |?]|? 2
not detected (MCVF = 0)
When multiply-and-accumulate operation overflow was 110]| ?| ?

detected (MCVF = 1)

Flag change

When multiply-and-accumulate operation overflow was not detected
VF: This is "0" and indicates that the multiply-and-accumulate operation is valid.
CF: Always “0”
NF: Undefined
ZF: Undefined
When multiply-and-accumulate operation overflow was detected
VF: This is "1" and indicates that the multiply-and-accumulate operation is invalid.
CF: Always “0”
NF: Undefined
ZF: Undefined

UDF06 229

Chapter 2 Instruction description

l]DF 0 7 Bit search instruction

UDFO7 Dm, Dn (BSCH Dm, Dn)

Operation
This instruction conducts a bit search within the 32-bit bit string stored in Dm, starting from
the bit position of the bit number indicated by the contents of (DN - 1) and continuing in the
direction of descending bit numbers. The bit number of the first bit position where a “1” is
found is then stored in Dn.
When the least significant five bits of Dn are zeroes, the bit search is conducted from bit 31
and continues in the direction of descending bit numbers.
If the bit search reaches bit 0 without finding a “1”, the “C” flag is set, 0x00000000 is
written in Dn and execution of this instruction ends.
When execution of this instruction starts, the upper 27 bits of Dn are ignored.
Assembler mnemonic Note VI|C I[N Size
udf07 Dm, Dn When a bit search was succeeded ("1" was founded) 21017 2
When a bit search was not succeeded ("1" was not 21112
founded)

Flag change

When a bit search was succeeded ("1" was found)
VF: Undefined
CF: Always “0”
NF: Undefined
ZF: Undefined
When a bit search was not succeeded ("1" was not founded)
VF: Undefined
CF: Always “0”
NF: Undefined
ZF: Undefined

23(0 UDFo07

Chapter 2 Instruction description

l)D ’ ; '08 Data swapping instruction that swaps
bytes from high-order to low-order

and vice versa in four byte data.

UDFO8 Dm, Dn (SWAP Dm, Dn)
Operation Dm([31:24] -> Dn[7:0]
Dm[23:16] -> Dn[15:8]
Dm[15:8] -> Dn[23:16]
Dm[7:0] -> Dn[31:24]

This instruction swaps the positions of the high-order and low-order 8-bit bytes within the
respective high-and low-order 16 bits in Dm, and then swaps the positions of the high-order and
low-order 16 bits in Dm, and then stores the result in Dn.

An example of execution is shown here.
Before execution: Dm=0x12345678 -> After execution: Dn=0x78563412
Assembler mnemonic Note V|C [N |z | Size
udf08 Dm, Dn S IR P 2
Flag change
VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

UDF08 231

Chapter 2 Instruction description

l }DF09 Data swapping instruction that swaps
bytes from high-order to low-order

and vice versa in two byte data.

UDF09 Dm, Dn (SWAPH Dm, Dn)

Operation Dm[31:24] -> Dn[23:16]
Dm[23:16] -> Dn[31:24]
Dm[15:8] -> Dn[7:0]
Dm[7:0] -> Dn[15:8]

An example of execution is shown here.
Before execution: Dm=0x12345678 -> After execution: Dn=0x34127856

respective high-and low-order 16 bits in Dm, and then stores the result in Dn.

This instruction swaps the positions of the high-order and low-order 8-bit bytes within the

Assembler mnemonic Note

\

Size

udf09 Dm, Dn

Flag change

VF : This is not changed.
CF : This is not changed.
NF : This is not changed.
ZF : This is not changed.

232 UDF09

Chapter 2 Instruction description

I]DFIZ Transfer instruction of the upper 32 bits

in the multiply-and-accumulate register

UDF12 Dm, Dn (GETCHX Dn)

Operation

.MCRH -> Dn

MCVF -> EPSW.V

This instruction stores the upper 32 bits of the multiply-and-accumulate operation register

(MCRH) in the register, Dn.

This sets the contents of the multiply-and-accumulate operation overflow,which is shown in

MCVF, in the V flag.

Assembler mnemonic Note VIC IN |z | Size
udf12 Dm, Dn When multiply-and-accumulate operation overflow was o0 |?]|? 2

not detected (MCVF = 0)
When multiply-and-accumulate operation overflow was 110 ?2]?

detected (MCVF = 1)

Flag change

When multiply-and-accumulate operation overflow was not detected
VF: This is "0" and indicates that the multiply-and-accumulate operation is valid.
CF: Always “0”
NF: Undefined
ZF: Undefined
When multiply-and-accumulate operation overflow was detected
VF: This is "1" and indicates that the multiply-and-accumulate operation is invalid.
CF: Always “0”
NF: Undefined
ZF: Undefined

UDF12 233

Chapter 2 Instruction description

I]DFI 3 Transfer instruction of the upper 32 bits

in the multiply-and-accumulate register

UDF13 Dm, Dn (GETCLX Dn)

Operation

.MCRL -> Dn

MCVF -> EPSW.V

This instruction stores the lower 32 bits of the multiply-and-accumulate operation register

(MCRH) in the register, Dn.

This sets the contents of the multiply-and-accumulate operation overflow,which is shown in

MCVF, in the V flag.

Assembler mnemonic Note V IC N |z | Size
udf13 Dm, Dn When multiply-and-accumulate operation overflow was o(0|?7]|7? 2

not detected (MCVF = 0)
When multiply-and-accumulate operation overflow was 110 7?2 7?

detected (MCVF = 1)

Flag change

When multiply-and-accumulate operation overflow was not detected
VF: This is "0" and indicates that the multiply-and-accumulate operation is valid.
CF: Always “0”
NF: Undefined
ZF: Undefined
When multiply-and-accumulate operation overflow was detected
VF: This is "1" and indicates that the multiply-and-accumulate operation is invalid.
CF: Always “0”
NF: Undefined
ZF: Undefined

234 UDF13

Chapter 2 Instruction description

UDFI 5 Transfer instruction of the high-

speed multiplication register

UDF15 Dm, Dn (GETX Dn)

Operation MDRQ -> Dn

The instruction stores the high-speed multiplication register (MDRQ) in the register, Dn.

Assembler mnemonic Note VIC [N |Z| Size
udf15 Dm, Dn 0|0|A|Al 2

Flag change

VF : Undefined.
CF : Undefined.
NF : "1" when the MSB of the operation result is "1"; "0" in all other cases.

ZF : "1" when the operation result is "0"; "0" in all other cases.

UDF15 235

Chapter2 Instruction details

FMO ' Transfer (Floating-point unit)

FMOV Mem, FSn %%

Operation FMOV in the case of (Rm), FSn
mem32(Rm) -> FSn

FMOV in the case of (SP), FSn
mem32(SP) -> FSn

FMOV in the case of (Rm, Ri), FSn
mem32(Rm+Ri) -> FSn

FMOV in the case of (disp, Rm), FSn
mem32(Rm+disp) -> FSn

FMOV in the case of (disp, SP), FSn
mem32(SP+disp) -> FSn

Memory contents are stored in the single-precision floating-point register (FSn).

) EC flag FCC flag .
Assembler mnemonic Note Size

V|Z|OJU| I|L|G|E|U

fmov (Rm), FSn N I R e

fmov (SP), FSn L N T R R -

fmov (Rm, Ri), FSn e T N R B

fmov (d8, Rm), FSn d8 is code-extended. T T R B

fmov (d24, Rm), FSn d24 is code-extended. - I L e

fmov (d32, Rm), FSn - - - -] -] - -] -] -

fmov (d8, SP), FSn d8 is zero-extended. e L T T R B

fmov (d24, SP), FSn d24 is zero-extended. B e L T T R B

N N|O|A[BAW|®

fmov (d32, SP), FSn - - - - - - - -

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change
LF : No change
GF : No change
EF : No change
UF : No change

G When the memory address is not a multiple of 4, a system exception (address misalign-
= ment exception) occurs.

236 FMOV

Chapter2 Instruction details

FMOV FSm, Mem % %

Operation FMOV in the case of FSm, (Rn)
FSm -> mem32 (Rn)
FMOYV in the case of FSm, (SP)
FSm -> mem32 (SP)
FMOV in the case of FSm, (Rn, Ri)
FSm -> mem32 (Rn+Ri)
FMOV in the case of FSm, (disp, Rn)
FSm -> mem32 (Rn+disp)
FMOV in the case of FSm, (disp, SP)
FSm -> mem32 (SP+disp)

The contents of the single-precision floating-point register (FSn) are stored in the memory.

EC flag FCC flag
V|Z|OJU| I|L|GIE|U

Assembler mnemonic Notes Size

fmov FSm, (Rn) B

fmov FSm, (SP) P Y R R B

fmov FSm, (Rn, Ri) - - oo - - -] 2 -

fmov FSm, (d8, Rn) d8 is code-extended. SR

fmov FSm, (d24, Rn) d24 is code-extended. e e e R

fmov FSm, (d32, Rn) N e R e

fmov FSm, (d8, SP) d8 is zero-extended. N N e

fmov FSm, (d24, SP) d24 is zero-extended. S S e e

Nfo|dh N[O |W®

fmov FSm, (d32, SP) - o - o -1 -1 -1 -1 -

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change
LF : No change
GF : No change
EF : No change
UF : No change

‘ When the memory address is not a multiple of 4,a system exception (address misalign-
: ment exception) occurs.

FMOV 237

Chapter2 Instruction details

FMOV (Rm+), FSn e 1

Operation mem32(Rm) -> FSn

Rm + 0x00000004 -> Rm

Data specified by the register (Rm) are loaded from the memory and stored in the single-preci-
sion floating-point register (FSn).

Moreover, the register (Rm) and 4 are added and the result is stored in the register (Rm).

) Not EC flag FCC flag Size
Assembler mnemonic ote 7 U G

@) | L ElU

fmov (Rm+), FSn -l -l - - - - -]- - 3

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change
LF : No change
GF : No change
EF : No change
UF : No change

‘ When memory address is not a multiple of 4, system exception (address misalignment
H exception) occurs.

238 FMOV

Chapter2 Instruction details

FMOV (Rm+, imm), FSn

T T

Operation mem32(Rm) -> FSn

Rm + imm -> Rm
of the single-precision floating-point register (FSn).

register (Rm).

Data specified by the register (Rm) are loaded from the memory (Mem) and stored in the contents

Moreover, the register (Rm) and immediate value (imm) are added and the result is stored in the

EC flag

FCC flag

Assembler mnemonic Note

V4

O

9)

L

G

E

9]

Size

fmov (Rn+, imm8), FSn imm8 is code-extended.

fmov (Rn+, imm24), FSn imm24 is code-extended.

fmov (Rn+, imm32), FSn

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change
LF : No change
GF : No change
EF : No change
UF : No change

G When memory address is not a multiple of 4, system exception (address misalignment

exception) occurs.

EMOV 239

Chapter2 Instruction details

FMOV FSm, (Rn+)

T T

Operation| FSm -> mem32(Rn)
Rn + 0x00000004 -> Rn
The contents of the single-precision floating-point register (FSm) are stored in the memory specified

by the register (Rn).

Moreover, the register (Rn) and 4 are added and the result is stored in the register (Rn).

Assembler mnemonic

Note

EC flag

FCC flag

Z

)

U

L

G

E

u

Size

fmov FSn, (Rn+)

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change
LF : No change
GF : No change
EF : No change
UF : No change

When the memory address is not a multiple of 4, system exception (address misalign-

ment exception) occurs.

240 FMOV

Chapter2 Instruction details

FMOV FSm, (Rn+, imm) o 15

Operation FSm -> mem32 (Rn)

Rn + imm -> Rn

The contents of the single-precision floating-point register (FSm) are stored in the memory (Mem)
specified by the register (Rn).

Moreover, the register (Rn) and immediate value (imm) are added and the result is stored in the

register (Rn).

. EC flag FCC flag .
Assembler mnemonic Note Size

VIZ|O|U|I|L|G|E|U

fmov FSm, (Rn+, imm8) imm8 is code-extended. L] - 4

fmov FSm, (Rn+, imm24) imm24 is code-extended. o N T A I AR I 6

fmov FSm, (Rn+, imm32) N U R U R I N 7

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change
LF : No change
GF : No change
EF : No change
UF : No change

‘ When the memory address is not a multiple of 4, system exception (address misalignment
= exception) occurs.

MOV 241

Chapter2 Instruction details

FMOV FSm, FSn ‘%%

Operation| FSm -> FSn
The contents of the single-precision-floatingpoint register (FSm) are stored in the single-precision

floating-point register (FSn).

EC flag FCC flag
V|(Z|OlU|lI |LIG|E|U

Size

Assembler mnemonic Note

fmov FSm, FSn e . 3

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change
LF : No change
GF : No change
EF : No change
UF : No change

FMOV FSm, Rn e 1

Operation | pgm -> Rn

The contents of the single-precision floating-point register (FSm) are stored in the register (Rn).

EC flag FCC flag)
VIZ[OTU[l [LIGIE] u| Size

Assembler mnemonic Note

fmov FSm, Rn _ - I R R N 3

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change
LF : No change
GF : No change
EF : No change
UF : No change

242 FMOV

Chapter2 Instruction details

FMOV Rm,FSn ‘%%

Operation Rm -> FSn

The contents of the register (Rm) are stored in the single-precision floating-point register(FSn).

EC flag FCC flag
V|IZIOJU|I |L|G|E|U

Assembler mnemonic Note Size

fmov Rm,FSn P IR I e T B R 3

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change

LF : No change
GF : No change
EF : No change
UF : No change

FMOV imm,FSn ‘%%

Operation imm32 -> FSn

The immediate value (imm) is stored in the single-precision floating-point register (FSn).

EC flag FCC flag
V|IZIOJU|I |L|G|E|U

Assembler mnemonic Note Size

fmov_imm32,FSn e e 7

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change

LF : No change
GF : No change
EF : No change
UF : No change

EMOV 243

Chapter2 Instruction details

FMOV FPCR,Rn %%

Operation FPCR -> Rn

The contents of the floating-point control unit register (FPCR) are stored in the register (Rn).

. EF flag EC flag FCC flag)
Assembler mnemonic Note Size
V|iZ|O|U|I|V|Z|O|U|I|L|G|E|U
fmov FPCR,Rn I D I T D R T 3
Flag change

EF flag VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change

EC flag VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change

FCC flag LF : No change
GF : No change
EF : No change
UF : No change

244 FMOV

Chapter2 Instruction details

FMOV Rm,FPCR %,ﬂmﬂ

Operation Rm -> FPCR

The contents of the register (Rm) are stored in the floating-point control unit register (FCPR).

) EF flag EC flag FCC flag .
Assembler mnemonic Note Size
VIZIOJU|I|V|[Z|IO|JU|I|L|G|E|U
fmov Rm,FPCR A|A|A|A|IA|A|A]A|A|A|A|A]A]A 3
Flag change
EF flag VF : This is "0" when Bit 4 of the source data is "1".

This not changed when Bit 4 of the source data is"0".
ZF : This is "0" when Bit 3 of the source data is "1".
This is not changed when Bit 3 of the source data is"0".
OF : This is "0" when Bit 2 of the source data is "1".
This is not changed when Bit 2 of the source data is"0".
UF : This is "0" when Bit 1 of the source data is "1".
This is not changed when Bit 1 of the source data is "0".
IF : This is "0" when Bit 0 of the source data is "1".
This is not changed when Bit 0 of the source data is "0".
EC flag VF : Bit 14 of the source data is set.
ZF : Bit 13 of the source data is set.
OF : Bit 12 of the source data is set.
UF : Bit 11 of the source data is set.
IF : Bit 10 of the source data is set.
FCC flag LF : Bit 21 of the source data is set.
GF : Bit 20 of the source data is set.
EF : Bit 19 of the source data is set.
UF : Bit 18 of the source data is set.

EMOV 245

Chapter2 Instruction details

FMOV imm,FPCR o

Operation imm32 -> FPCR
The contents of the immediate values (imm32) are stored in the floating-point control unit register
(FCPR).
EF fla EC fla FCC fla
Assembler mnemonic Note g £ & Size
V|IZIOJU|I|V|Z|O|U|I |L|G|E|U
fmov imm32,FPCR AlA|AITAIA]AIAIAAIAA|A]IA|A 6

Flag change

EF flag

EC flag

FCC flag

VF : This is "0" when Bit 4 of the source data is "1".
This not changed when Bit 4 of the source data is"0".

ZF : This is "0" when Bit 3 of the source data is "1".

This is not changed when Bit 3 of the source data is"0".
OF : This is "0" when Bit 2 of the source data is "1".

This is not changed when Bit 2 of the source data is"0".
UF : This is "0" when Bit 1 of the source data is "1".

This is not changed when Bit 1 of the source data is "0".
IF : This is "0" when Bit 0 of the source data is "1".

This is not changed when Bit 0 of the source data is "0".
VF : Bit 14 of the source data is set.
ZF : Bit 13 of the source data is set.
OF : Bit 12 of the source data is set.
UF : Bit 11 of the source data is set.
IF : Bit 10 of the source data is set.
LF : Bit 21 of the source data is set.
GF : Bit 20 of the source data is set.
EF : Bit 19 of the source data is set.
UF : Bit 18 of the source data is set.

246 FMOV

Chapter2 Instruction details

FMOV Mem,FDn

T T

Operation

FDn -

FMOV (Rm),FDn

mem64(Rm) -> FDn

FMOV (SP),FDn

mem64(SP) -> FDn

FMOV (Rm,Ri),FSn

mem64(Rm + Ri)-> FDn

FMOV (disp,Rm),FDn

mem64(disp+ Rm) -> FDn

FMOV (disp,SP),FDn

mem64(disp+ SP) -> FDn
> {FSn+1,FSn} (n:even)

The contents of the 64-bit memory are stored in the double-precision floating point register (FDn).

Assembler mnemonic Note

EC flag

FCC flag Si
ize

Z |0

U

LIGIE|U

fmov (Rm),FDn

fmov (SP),FDn

fmov (Rm,Ri),FDn

fmov (d8,Rm),FDn

d8 is sign-extended.

fmov (d24,Rm),FDn

d24 is sign-extended.

fmov (d32,Rm),FDn

fmov (d8,SP),FDn

d8is zero-extended.

fmov (d24,SP),FDn

d24 is zero-extended.

fmov (d32,SP),FDn

1

1

1
Njo|aN|jo|a|p|lw|w

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change

LF : No change
GF : No change
EF : No change
UF : No change

(

When the Mem address is not a multiple of 8, system exception (Address misalignment

exception) occurs.

EMOV 247

Chapter2 Instruction details

FMOV FDm,Mem

T T

Operation

FMOYV FDm,(Rn)

FDm -> mem64(Rn)
FMOYV FDm,(SP)

FDm -> mem64(SP)
FMOYV FDm,(Rn,Ri)

FDm -> mem64(Rn + Ri)
FMOV FDm,(disp,Rn)

FDm -> mem64(Rn + disp)
FMOV FDm,(disp,SP)

FDm -> mem64(SP + disp)
FDm -> {FSm+1,FSm} (m : even)

The contents of the double-precision floating point register (FDm) are stored in the 64-bit memory.

Assembler mnemonic Note

EC flag

FCC flag

Z

O

u

L

G

E

9)

Size

fmov FDm,(Rn)

fmov FDm,(SP)

fmov FDm,(Rn,Ri)

fmov FDm,(d8,Rn)

d8 is sign-extended.

fmov FDm,(d24,Rn)

d24 is sign-extended.

fmov FDm,(d32,Rn)

fmov FDm,(d8,SP)

d8is zero-extended.

fmov FDm,(d24,SP)

d24 is zero-extended.

fmov FDm,(d32,SP)

N O NP OW®

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change

LF : No change
GF : No change
EF : No change
UF : No change

(

When the Mem address is not a multiple of 8, system exception (Address misalignment

exception) occurs.

248 FMOV

Chapter2 Instruction details

FMOV (Rm+),FDn e 1

Operation mem64(Rm)-> FDn
Rm + 0x00000008 -> Rm
FDn = {FSn+1,FSn} (n:even)

The contents of the 64-bit memory which is specified by the register (Rm) are stored in the double-
precision floating-point register (FDn). Then, 0x00000008 is added to the register (Rm).

EC flag FCC flag

VIZ|IO|U|I|L|G|E|U
fmov (Rm+),FDn T I I R 3

Flag change

Assembler mnemonic Note Size

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change

LF : No change
GF : No change
EF : No change
UF : No change

G When the Mem address is not a multiple of 8, system exception (Address misalignment
exception) occurs.

EMOV 249

Chapter2 Instruction details

FMOV (Rm+,imm),FDn

T T

Operation mem64(Rm) -> FDn

Rm + imm -> Rm

FDn = {FSn+1,FSn} (n:even)

The contents of the 64-bit memory which is specified by the register (Rm) are stored in the double-

precision floating-point register (FDn). Then, an immediate value is added to the register (Rm).

) EC flag FCC flag)
Assembler mnemonic Note Size
V| iZ|O|U L|IG|E

fmov (Rm+,imm8),FDn imm8 is sign-extended. -l -] - -l - 4
fmov (Rm+,imm24),FDn imm24 is sign-extended. o N 6
fmov (Rm+,imm32),FDn -l-] - - -l - - 7

Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change

LF : No change
GF : No change
EF : No change
UF : No change

(

When the Mem address is not a multiple of 8, system exception (Address misalignment

exception) occurs.

250 FMoOV

Chapter2 Instruction details

FMOV FDm,(Rn+) e 1

Operation FDm -> mem64(Rn)
Rn + 0x00000008 -> Rn
FDm={FSm+1,FSm}(m:even)

The contents of the double-precision floating-point register (FDm) which is specified by the register
(Rn) are stored in the 64-bit memory. Then 0x00000008 is added to the register (Rn).

EC flag FCC flag
V|Z|IOJU|I|L|G|E|U

Assembler mnemonic Note Size

fmov FDm,(Rn+) S I I 3
Flag change

VF : No change
ZF : No change
OF : No change
UF : No change
IF : No change

LF : No change
GF : No change
EF : No change
UF : No change

G When the Mem address is not a multiple of 8, system exception (Address misalignment
exception) occurs.

MOV 251

Chapter2 Instruction

details

FMOV

FDm,(Rn+,imm) %%

Operation FDm -> mem64(Rn)
Rn +imm -> Rn
FDm={FSm+1,FSm}(m:even)
The contents of the double-precision floating-point register (FDm) are stored in the 64-bit memory
specified by the register (Rn).
Then an immediate value is added to the register (Rn).
Assembler mnemonic Note EC flag FCC flag Size
VIZIO/U|I|L|G|E|U
fmov FDm,(Rn+,imm8) imm8 is sign-extended N 4
fmov FDm,(Rn+,imm24) imm24 is sign-extended N R O e e 6
fmov FDm,(Rn+,imm32) o e e e e 7

Flag change

ZF : No change

IF : No change
LF : No change

EF : No change

VF : No change

OF : No change

UF : No change

GF : No change

UF : No change

(

When the Mem address is not a multiple of 8, system exception (Address misalignment
exception) occurs.

252 FMOV

Chapter 2 Instruction description

FABS Floating-point absolute value
FABS FSn % ,%

Operation | FSn |->FSn
This takes an absolute value of the register (FSn), and stores the result in the register (FSn).
EC flag FCC flag Si
Assembler mnemonic Note VIZIO/U[I LIGIEIU 1z¢
fabs FSn N N A 3

Flag change

VF: This is not changed.
ZF: This is not changed.
OF: This is not changed.
UF: This is not changed.
IF: This is not changed.
LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

FABS FSm, FSn % %

Operation |FSm | -> FSn
This takes an absolute value of the register (FSm), and stores the result in the register (FSn).
EC flag FCC flag Si
Assembler mnemonic Note VIiZIolUl I LIGIElU 1ze
fabs FSm, FSn . - 2 2 - 4

Flag change

VF: This is not changed.
ZF: This is not changed.
OF: This is not changed.
UF: This is not changed.
IF: This is not changed.
LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

FABS 253

Chapter 2 Instruction description

FNEG

Floating-point negative numbers

FNEG FSn

T T

Operation FSn * (1) -> FSn
This multiplies the register (FSn) by -1, and stores the result in the register (FSn).
EC flag FCC flag Si
Assembler mnemonic Note ZTolU LIGIElU 1z¢
fneg FSn N I 3

Flag change

VF: This is not changed.
ZF: This is not changed.
OF: This is not changed.
UF: This is not changed.
IF: This is not changed.

LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

FNEG FSm, FSn

o T

Operation FSn * (-1) -> FSn
This multiplies the register (FSm) by -1, and stores the result in the register (FSn).
EC flag FCC flag Si
Assembler mnemonic Note ZTolu LTGI El U 1z¢
fneg FSm, FSn N - - - - 4

Flag change

VF: This is not changed.
ZF: This is not changed.
OF: This is not changed.
UF: This is not changed.
IF: This is not changed.

LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

254 FNEG

Chapter 2 Instruction description

FRS QR T 1/square root of the floating point

FRSQRT FSn

T T

Operation | 4,0+ (Fsn) -> FSn

This stores the reciprocal of the square root of the register (FSn) in the register FSn).

EC flag FCC flag Si
Assembler mnemonic Note VIZIOlu LIGIElU 1z¢
frsqrt FSm A|A|O|O | Al -| -| -] - 3

Flag change

cases.

ZF: This is "1" when the sourcr data is £0. This is "0" in all other cases.
OF: This is always "0".

UF: This is always "0".

LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

VF: This is "1" when the source data is sNaN, negative normalized numbers, or -INF. This is "0" in all other

IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.

FRSQRT FSm, FSn

T

Operation| /<t (FSn) -> FSn
This stores the reciprocal of the square root of the register (FSm) in the register (FSn).
EC flag FCC flag Si
Assembler mnemonic Note VIZIOolu LIGI El U 1z¢
frsqrt FSm, FSn A|lA|O]|O - -] -] - 4

Flag change

cases.

ZF: This is "1" when the sourcr data is +£0. This is "0" in all other cases.
OF: This is always "0".

UF: This is always "0".

LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.

VF: This is "1" when the source data is sNaN, negative normalized numbers, or -INF. This is "0" in all other

FRSQRT 255

Chapter 2 Instruction description

(1) When the FPU operation exception enable flag is "1"

FSm +NORM | -NORM +0 0 +INF -INF qNaN sNaN
Data Output | /gqrt - - - +0 - gNaN -
FSm +NORM | -NORM +0 0 +INF -INF qNaN sNaN
EC Flag 1/Sqrt v z z 0 v 0 v
(1-1) 1/Sqrt
Calculation result Data Output| EC Flag
v < Oxff7fffff - [6)
Oxff7fffff <v < 0x80800000 */ - 0/1
0x80800000<v <0 - U
0 +0/-0 0
0 < v < 0x00800000 - U
0x00800000 < v < Ox7f7fffff */ - 0/1
Ox7f7fffff < v - (6]
(2) When the FPU operation exception enable flag is "0"
FSm +NORM | -NORM | +0 -0 +INF -INF gNaN | sNaN
Data Output | /sqrt | gNaN | +INF -INF +0 gNaN_ | gNaN | gNaN
FSm +NORM | -NORM +0 0 +INF -INF qNaN sNaN
EC Flag 1/Sqrt _ _ _ _ _ _ _
(2-1) 1/Sqrt
Calculation result Data Output| EC Flag
v < Oxff7fffff -INF -
Oxff7fffff <v < 0x80800000 * -
0x80800000<v <0 -0 -
0 -0 /+0 -
0 < v < 0x00800000 +0 -
0x00800000 < v < Ox7f7fffff * -
Ox7f7fffff < v +INF -

256 FRSQRT

Chapter 2 Instruction description

F CM P Comparison of the floating-point data
FCMP FSm1, FSm2 %%

Operation| o > FSm1: FPCR (EC)
This subtracts the register (FSm1) from the register (FSm2), and reflects the result in the floating-
point unit control register (FPCR).
EC flag FCC flag Si
Assembler mnemonic Note VIZIOlUl I LIGI El U 1z¢
fcmp FSm1, FSm2 AlO[O|O0 | OjlA| Al A|A 3

Flag change

VF: This is "1" when the source data is sNaN. This is "0" in all other cases.
ZF: This is always "0".

OF: This is always "0".

UF: This is always "0".

IF: This is always "0".

LF: This is not changed.

GF: This is not changed.

EF: This is not changed.

UF: This is not changed.

FCMP imm, FSm %%

Operation FSm - imm32 : FPCR (EC)

This subtracts the register (FSm1) from the register (FSm2), and reflects the result in the floating-
point unit control register (FPCR).

EC flag FCC flag Si
Assembler mnemonic Note vizlolul 1L Gl E 1z¢
fcmp imm32, FSm, FSn AlO0O|O0O|O0O | O|]A| Al Al A 3

Flag change

VF: This is "1" when the source data is sNaN. This is "0" in all other cases.
ZF: This is always "0".

OF: This is always "0".

UF: This is always "0".

IF: This is always "0".

LF: This is "1" when FSm1>FSm2 or fimm32>FSm.

GF: This is "1" when FSm1>FSm2 or fimm32>FSm.

EF: This is "1" when FSm1=FSm2 or fimm32=FSm.

UF: This is "1" when comparison is impossible.

FCMP 257

Chapter 2 Instruction description

(1) When the FPU operation exception enable flag is "1"

FSm2 / FSm
Data Output
NORM +0 -0 +INF -INF gNaN sNaN
NORM - - - - - - -
+0 - - - - - - -
FSml1 / -0 _ _ _ _ _ - -
11'Ill'Il32 +INF _ _ _ _ - - -
-INF - - - - - - -
qNaN - - - - - - -
sNaN - - - - - - -
EC Flag FSm2 / FSm
NORM +0 0 +INF -INF qNaN sNaN
NORM 0 0 0 0 0 0 \%
+0 0 0 0 0 0 0 \%
FSml/| 0 0 0 0 0 0 v
imm32 | 4 NF 0 0 0 0 0 0 \%
-INF 0 0 0 0 0 0 \%
qNaN 0 0 0 0 0 0 \%
sNaN \ \ \ \ \ \ \
FCC Flag FSm2 / FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM | CMP CMP CMP G L U 0
+0 CNP E E G L U 0
FSml/| CNP E E G L U 0
imm32 | NF L L L E L U 0
-INF G G G G E U 0
qNaN U U U U U U 0
sNaN 0 0 0 0 0 0 0
(1-1) CMP instruction
Calculation result Data Output| EC Flag | FCC Flag
v < OXFF7Ff - - L
Oxff7fffff <v < 0x80800000 - - L
0x80800000<v <0 - - L
0 - - E
0 < v < 0x00800000 - - G
0x00800000 < v < Ox7f7fffff - - G
OX7f7fffff < v - - G

258 FCcmP

(1) When the FPU operation exception enable flag is "0"

Chapter 2 Instruction description

Data Output

FSm2 / FSm

NORM

+0

-0

+INF

qNaN

sNaN

FSm1/
imm32

NORM

EC Flag

FSm2 / FSm

+INF

FSm1/
imm32

NORM

qNaN

sNaN

FCC Flag

FSm2 / FSm

NORM

+INF

gqNaN

sNaN

FSm1/
imm32

NORM

CMP

+0

CNP

-0

CNP

+INF

-INF

qNaN

sNaN

c|c|Q |

clc|la|m|Q|a |’

Gcmhhrt—z

c|c|c|c|c|c

c|c|c|c|c|c

(2-1) CMP instruction

Calculation result

Data Output

FCC Flag

v < Oxff7fffff

Oxff7fffff <v < 0x80800000

0x80800000<v <0

0

0 < v <0x00800000

0x00800000 < v < Ox7f7fffff

OX7f7fffff < v

Qlalajg|c|o|

FCMP

259

Chapter 2 Instruction description

FADD Addition of the floating-point data
FADD FSm, FSn e A

Operation| co FSm > Fsn
This adds the contents of the register (FSn) and the register (FSm) to each other, and stores the result in
the register (FSn).
EC flag FCC flag .
Assembler mnemonic Note VIZIO/U[TILIGTEIU Size
fadd FSm, FSn AlO|A|A|A| -] -] -] - 3

Flag change

VF: This is "1" when the source data is sNaN or (+INF)+(-INF). This is "0" in all other cases.
ZF: This is always "0".

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than the
negative maximum value. This is "0" in all other cases.

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.
IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.

LF: This is not changed.

GF: This is not changed.

EF: This is not changed.

UF: This is not changed.

FADD FSm1, FSm2, FSn e 1

Operation FSm1 + FSm2 -> FSn

This adds the contents of the register (FSm2) and the register (FSm1) to each other, and stores the result
in the register (FSn).

EC flag FCC flag Si
Assembler mnemonic Note VIZIOlUT1ILIGIEIU 1z¢
fadd FSm1, FSm2, FSn AlOJA|A|IA]-|-]| -] - 4

Flag change

VF: This is "1" when the source data is sNaN or (+INF)+(-INF). This is "0" in all other cases.
ZF: This is always "0".

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than thg
negative maximum value. This is "0" in all other cases.

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.
IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.

LF: This is not changed.

GF: This is not changed.

EF: This is not changed.

UF: This is not changed.

260 FADD

Chapter 2 Instruction description

FADD imm, FSm, FSn

o

Operation

FSm + imm32 -> FSn

This adds the register (FSm) to the immediate value (imm32), and stores the result in the register

(FSn).
EC flag FCC flag Si
Assembler mnemonic Note VIZIOJUTIILIGTEIU 1z¢
fadd imm32, FSm, FSn Al -|A|A[A| -] -] -] - 7

Flag change

negative maximum value. This is "0" in all other cases.

IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.
LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

VF: This is "1" when the source data is sNaN or (+INF)+(-INF). This is "0" in all other cases.
ZF: This is always "0".

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than the

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.

(1) When the FPU operation exception enable flag

Data Output FSm2 / FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM | ADD ADD ADD +INF -INF qNaN -
+0 ADD +0 +0 +INF _INF qNaN -
FSml/| ADD +0 -0 +INF AINF | gNaN :
imm32 | \F +INF +INF +INF +INF - qNaN -
-INF -INF -INF -INF : _INF qNaN -
gqNaN qNaN gqNaN gqNaN gqNaN gqNaN gqNaN -
sNaN - - - - - - -
EC Flag FSm2 / FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM | ADD 0 0 0 0 0 \
+0 0 0 0 0 0 0
FSml/| 0 0 0 0 0 0 v
imm32 | NF 0 0 0 0 \4 0 v
_INF 0 0 0 \4 0 0 v
gNaN 0 0 0 0 0 0 %
sNaN \ \ \4 \4 \4 \4 v

FADD 261

Chapter 2 Instruction description

(1-1) ADD instruction

Calculation result Data Output| EC Flag
v < Oxff7fffff - O
Oxff7fffff <v < 0x80800000 */ - 0/1
0x80800000<v <0 - U
0 +0/-0 0
0 < v < 0x00800000 - U
0x00800000 < v < Ox7f7fffff */ - 0/1
OXT7F7fffff < v - (0]
(2) When the FPU operation exception enable flag is "0"
Data Output FSm2 /FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM ADD ADD ADD +INF -INF gNaN gNaN
+0 ADD +0 +0 +INF -INF gNaN gqNaN
FSml/| ADD +0 -0 +INF ANF | gNaN | gNaN
imm32 | NF +INF +INF +INF +INF | gNaN | gNaN | gNaN
-INF -INF -INF -INF gqNaN -INF gqNaN gqNaN
gNaN gqNaN gqNaN qNaN gqNaN gqNaN gqNaN gqNaN
sNaN gNaN qNaN qNaN gNaN gNaN gNaN gNaN
EC Flag FSm2 / FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM - - - - - - -
+0 - - - - - - -
FSm1 / 0 - R R ; , - -
imm32 | . NF B B B} . . - -
_INF - - - - - - -
gqNaN - - - - - - -
sNaN - - - - - - -
(2-1) ADD instruction
Calculation result Data Output| EC Flag
Vv < Oxff7fffff -INF -
Oxff7fffff <v < 0x80800000 * -
0x80800000<v <0 -0 -
0 -0 /40 -
0 < v < 0x00800000 +0 -
0x00800000 < v < Ox7f7fffff * -
OXT7F7fffff < v +INF -

262 FADD

FS(]B Subtraction of the floating-point data

Chapter 2 Instruction description

FSUB FSm, FSn

o

Operation| co Fom -> Fsn
This subtracts the contents of the register (FSm) from the contents of the register (FSn), and stores the
result in the register (FSn).
EC flag FCC flag Si
Assembler mnemonic Note VIZIO/U[TILIGIElU 1z¢
fsud FSm, FSn AlO|A|A|A|-|-| -] - 3

Flag change

ZF: This is always "0".

negative maximum value. This is "0" in all other cases.

LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

VF: This is "1" when the source data is sNaN or (£INF)+(£INF). This is "0" in all other cases.

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than the

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.

IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.

FSUB FSm1, FSm2, FSn

e T

Operation| o> - FSm1 -> Fsn
This subtracts the contents of the register (FSm1) from the contents of the register (FSm2), and stores
the result in the register (FSn).
EC flag FCC flag Si
Assembler mnemonic Note VIZIO/U[TILIGTElU 1z¢
fsub FSm1, FSm2, FSn AlO|A|A|A| -] -] -] - 4

Flag change

VF: This is "1" when the source data is sNaN or (zINF)+(£INF). This is "0" in all other cases.

ZF: This is always "0".

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than thg

negative maximum value. This is "0" in all other cases.

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.

IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.
LF: This is not changed.

GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

FSUB

263

Chapter 2 Instruction description

FSUB

imm, FSm, FSn

o

Operation

FSm - imm32 -> FSn

result in the register (FSn).

This subtracts the immeidiate value (imm32) from the contents of the register (FSm), and stores the

EC flag FCC flag Si
Assembler mnemonic Note vVIizZzIoluliIlLIGIE[U 1z¢
fsub imm32, FSm, FSn AlO|A|A|A] - -| -] - 7

Flag change

negative maximum value. This is "0" in all other cases.

IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.
LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

VF: This is "1" when the source data is sNaN or (zINF)+(£INF). This is "0" in all other cases.
ZF: This is always "0".

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than the

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.

(1) When the FPU operation exception enable flag is "1"

Data Output FSm2 /FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM SUB SUB SUB +INF -INF gNaN -
+0 SUB +0 -0 +INF -INF qNaN -
FSml/| SUB +0 +0 +INF AINF | gNaN :
imm32 |y NF JINF N AINF .| INF | gNaN -
-INF +INF +INF +INF +INF ° | qNaN -
gNaN qNaN gqNaN gNaN gqNaN gNaN qNaN -
sNaN - - - - - - -
EC Flag FSm2 / FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM SUB 0 0 0 0 0 \%
+0 0 0 0 0 0 0
FSml/| 0 0 0 0 0 0 v
imm32 | Nf 0 0 0 N 0 0 \
-INF 0 0 0 0 \% 0 \'%
gNaN 0 0 0 0 0 0 \%
sNaN \ \ \ \ \ \ \

264 FSUB

Chapter 2 Instruction description

(1-1) SUB instruction

Calculation result Data Output| EC Flag
v < Oxff7fffff - (6]
Oxff7fffff <v < 0x80800000 */ - 0/1
0x80800000<v <0 - U
0 +0/-0 0
0 < v < 0x00800000 - U
0x00800000 < v < Ox7f7fffff */ - 0/1
OX7f7fffff < v - o

(2) When the FPU operation exception enable flag is "0"

Data Output FSm2 /FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM SUB SUB SUB +INF -INF gNaN gqNaN
+0 SUB +0 -0 +INF -INF gNaN gqNaN
FSml/| SUB +0 +0 +INF ANF | gNaN | gNaN
imm32 | NF -INF -INF INF | gNaN -INF gNaN | gNaN
-INF +INF +INF +INF +INF gNaN gNaN qNaN
qNaN qNaN gqNaN gqNaN gqNaN qNaN qNaN gqNaN
sNaN gqNaN gNaN gNaN gNaN gNaN gNaN gNaN

EC Flag FSm2 /FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM - - - - - - -
+0 - - - - - - -
FSm1/ -0 _ - - - - - -
imm32 +INF _ _ - _ - - -
-INF - - - - - - -
qNaN - - - - - - -
sNaN - - - - - - -
(2-1) SUB instruction
Calculation result Data Output| EC Flag
v < Oxff7fffff -INF -
Oxff7fffff <v < 0x80800000 * -
0x80800000<v <0 -0 -
0 -0/+0 -
0 < v < 0x00800000 +0 -
0x00800000 < v < Ox7f7fffff * -
Ox7f7fffff < v +INF -

FSUB 265

Chapter 2 Instruction description

FMUL Multiplication of floating-point data
FMUL FSm, FSn o ot

Operation| co+ £Sm > Fsn
This multiplies the contents of the register (FSm) by the contents of the register (FSn), and stores the
result in the register (FSn).
EC flag FCC flag Si
Assembler mnemonic Note VIZIO/U[TILIGTEIU 1z¢
fmul FSm, FSn AlO|A|A|A] - -| -] - 3

Flag change

VF: This is "1" when the source data is sNaN or (xINF) * (0). This is "0" in all other cases.
ZF: This is always "0".

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than the
negative maximum value. This is "0" in all other cases.

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.
IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.

LF: This is not changed.

GF: This is not changed.

EF: This is not changed.

UF: This is not changed.

FMUL FSm1, FSm2, FSn %%

Operation| e+ £Sm > Fsn

This multiplies the contents of the register (FSm1) by the contents of the register (FSm2), and stores the
result in the register (FSn).

EC flag FCC flag Si
Assembler mnemonic Note VIZIOIUTIILIGTEIU 1z¢
fmul FSm1, FSm2, FSn AlO|A|A|A] -] -] -] - 4

Flag change

VF: This is "1" when the source data is sNaN or (xINF) * (0). This is "0" in all other cases.
ZF: This is always "0".

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than the
negative maximum value. This is "0" in all other cases.

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.
IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.

LF: This is not changed.

GF: This is not changed.

EF: This is not changed.

UF: This is not changed.

266 FMUL

Chapter 2 Instruction description

FMUL imm32, FSm, FSn

o

Operation| oo wy 130 s Fsn

in the register (FSn).

This multiplies the contents of the register (FSm) by the immediate value (imm32), and stores the result

EC flag FCC flag Si
Assembler mnemonic Note VIZIOJUTIILIGTEIU 1z¢
fmul imm32, FSm, FSn AlO|A|A|A] - -| -] - 7

Flag change

ZF: This is always "0".

LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

negative maximum value. This is "0" in all other cases.

VF: This is "1" when the source data is sNaN or (xINF) * (0). This is "0" in all other cases.

IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than the

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.

(1) When the FPU operation exception enable flag is "1"

Data Output FSm2 / FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM | MUL 0 0 INF INF gNaN -
+0 0 +0 -0 - - qNaN -
FSml/| 0 0 +0 - - qNaN -
imm32 +INF INF - - +INF -INF gqNaN -
-INF INF - - -INF +INF gqNaN -
gNaN qNaN qNaN qNaN qNaN qNaN qNaN -
sNaN - - - - - - -
EC Flag FSm2 / FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM MUL 0 0 0 0 0 \%
+0 0 0 0 \% \% 0
FSml/| 0 0 0 \ \ 0 i
imm32 | 4NF 0 \ \ 0 0 0 \
-INF 0 \4 \4 0 0 0 \4
gqNaN 0 0 0 0 0 0 \4
sNaN \ \ \ \ \ \ \

FMUL 267

Chapter 2 Instruction description

(1-1) MUL instruction

Calculation result Data Output| EC Flag
Vv < Oxff7fffff - (0)
Oxff7fffff <v < 0x80800000 */ - 0/1
0x80800000<v <0 - U
0 +0/-0 0
0 < v < 0x00800000 - U
0x00800000 < v < Ox7f7fffff */ - 0/1
Ox7f7fffff < v - o
(2) When the FPU operation exception enable flag is "0"
Data Output FSm2 /FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM MUL 0 0 INF INF gNaN gNaN
+0 0 +0 -0 gNaN gNaN gNaN gNaN
FSml/| MUL -0 +0 gNaN | gNaN | gNaN | gNaN
imm32 | L \F INF gNaN | gNaN +INF _INF gNaN | gNaN
-INF INF gqNaN qNaN -INF +INF gqNaN qNaN
gqNaN gqNaN qNaN qNaN gqNaN gqNaN gqNaN gqNaN
sNaN gNaN gNaN gNaN gNaN gNaN gqNaN gNaN
EC Flag FSm2 / FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM - - - - - - -
+0 - - - - - - -
FSm1/ -0 _ _ - - - - -
imm32 +INF _ _ _ - - - -
_INF - - - - - - -
gqNaN - - - - - - -
sNaN - - - - - - -
(2-1) MUL instruction
Calculation result Data Output| EC Flag
v < Oxff7fffff -INF -
Oxff7fffff <v < 0x80800000 * -
0x80800000<v <0 -0 -
0 -0 /40 -
0 < v < 0x00800000 +0 -
0x00800000 < v < Ox7f7fffff * -
OXT7F7fffff < v +INF -

268 FMUL

Chapter 2 Instruction description

FDIV Division of floating-point data
FDIV FSm, FSn er o

Operation | o esm > Fsn
This divides the contents of the register (FSn) by the contents of the register (FSm), and stores the result
in the register (FSn).
EC flag FCC flag Si
Assembler mnemonic Note VIZIOolUlIlLIGIElU 1z¢
fdiv. FSm, FSn AlA|A|AIA] -] -] -] - 3

Flag change

VF: This is "1" when the source data is sNaN, (£INF)/(xINF), or (£0)/(£0). This is "0" in all other cases.
ZF: This is "1" when the dividend is +£0. This is "0" in all other cases.

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than the
negative maximum value. This is "0" in all other cases.

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.
IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.

LF: This is not changed.

GF: This is not changed.

EF: This is not changed.

UF: This is not changed.

FDIV FSm1, FSm2, FSn g,% %

Operation| oo es > Fsn

This divides the contents of the register (FSn) by the contents of the register (FSm), and stores the result
in the register (FSn).

EC flag FCC flag Si
Assembler mnemonic Note VIZIOIUTIILIGTEIU 1z¢
fdiv. FSm1, FSm2, FSn AlA|A|AIA] -] -] -] - 3

Flag change

VF: This is "1" when the source data is sNaN, (£INF)/(xINF), or (£0)/(+0). This is "0" in all other cases.
ZF: This is "1" when the dividend is +£0. This is "0" in all other cases.

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than the
negative maximum value. This is "0" in all other cases.

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.
IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.

LF: This is not changed.

GF: This is not changed.

EF: This is not changed.

UF: This is not changed.

FDIV 269

Chapter 2 Instruction description

FDIV

imm, FSm, FSn

Operation

FSm/imm32 -> FSn

This divides the contents of the register (FSm) by the immediate value (imm32), and stores the result in

the register (FSn).
EC flag FCC flag Si
Assembler mnemonic Note vIizZIolu GIEIU 1z¢
fdiv imm32, FSm, FSn AlA|A]A|A - - - 7

Flag change

negative maximum value. This is "0" in all other cases.

IF: This is "1" when the operation result is inaccurate. This is "0" in all other cases.
LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

VF: This is "1" when the source data is sNaN, (£INF)/(xINF), or (£0)/(£0). This is "0" in all other cases.
ZF: This is "1" when the dividend is +£0. This is "0" in all other cases.

OF: This is "1" when the operation result is greater than the positive maximum value or smaller than the

UF: This is "1" when the operation result is not "0" and is between £2Emin. This is "0" in all other cases.

(1) When the FPU operation exception enable flag is "1"

Data Output FSm2 /FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM DIV 0 0 INF INF gqNaN -
+0 - - - +INF -INF qNaN -
FSml/| - : : INF | 4INF | gNaN -
imm32 | | F +0 0 - - gNaN -
-INF -0 +0 - - qNaN -
gNaN gqNaN gqNaN gqNaN gqNaN gNaN gqNaN -
sNaN - - - - - - -
EC Flag FSm2 / FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM DIV 0 0 0 0 0 \
+0 Z \Y \Y% 0 0 0 \Y
FSml/| z v v 0 0 0 \
imm32 | NF 0 0 0 \ \ 0 \
-INF 0 0 0 \ \4 0 \4
qNaN 0 0 0 0 0 0 \Y
sNaN \Y% \Y% \Y% \Y% \Y \Y \Y

270 FDIV

(1-1) DIV instruction

Chapter 2 Instruction description

Calculation result Data Output| EC Flag
Vv < Oxff7fffff - (0)
Oxff7fffff <v < 0x80800000 */ - 0/1
0x80800000<v <0 - U
0 +0/-0 0
0 < v < 0x00800000 - U
0x00800000 < v < Ox7f7fffff */ - 0/1
Ox7f7fffff < v - (¢
(2) When the FPU operation exception enable flag is "0"
Data Output FSm2 /FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM DIV 0 0 INF INF gNaN gNaN
+0 INF gNaN gNaN +INF -INF gNaN gqNaN
FSml/| INF gNaN | gNaN | -INF | +INF | qNaN | qNaN
imm32 | NF 0 +0 0 gNaN | gNaN | gNaN | gNaN
-INF 0 -0 +0 qNaN gqNaN gqNaN qNaN
qNaN qNaN qNaN qNaN gqNaN gqNaN gqNaN gqNaN
sNaN qNaN qNaN qNaN gNaN gNaN gNaN gNaN
EC Flag FSm2 / FSm
NORM +0 -0 +INF -INF gNaN sNaN
NORM - - - - - - -
+0 - - - - - - -
FSml/|[_)) _]]]
imm32 | . NF B} - -
-INF - - - - - - -
qNaN - - - - - - -
sNaN - - - - - - -
Calculation result Data Output| EC Flag
Vv < Oxff7fffff -INF -
Oxff7fffff <v < 0x80800000 * -
0x80800000<v <0 -0 -
0 -0/+0 -
0 < v < 0x00800000 +0 -
0x00800000 < v < Ox7frfffff * -
OXT7F7fffff < v +INF -

FDIV 271

Chapter 2 Instruction description

WADD Compound instructions of multi-
plication and addition of the float-

ing-point data

FMADD FSm1, FSm2, FSm3, FSn o 1

. ((FSm1*FSm2) + FSm3) -> FSn
Operation
The result of multiplying the contents of the register (FSm1) by the contents of the register (FSm2) is
added to the contents of the register (FSm3), and the result of addition is stored in the register (FSn).
The purpose register is any of FSO-FS7.
EC flag FCC flag Si
Assembler mnemonic Note vV]iz[olul I LIGIElU 1ze
fmadd FSm1, FSm2, FSm3, FSn A|lO|A| A| Al - - -] - 4

Flag change

VF: This is "1" when the source data is any of the followings: sNaN, (£INF)*(£0), (+INF)+(-INF),
(-INF)+(+INF), or (+ INF)-(£INF). This is "0" in all other cases.

ZF: This is always "0".

OF: This is "1" when the operation result is greater than the positive maximum value and smaller than the
negative maximum value. This is "0" in all other cases.

UF: This is "1" when the operation result is not "0" and is between +2Emin, and this is "0" in other cases.

IF: This is "1" when the operation result is inaccurate, and this is "0" in all other cases.

LF: This is not changed.

GF: This is not changed.

EF: This is not changed.

UF: This is not changed.

G The purpose register is one of the FS0-FS7.
(1) The followings are shown when the FPU operational exception enable flag is "1".
Data Output FSm2
FSm3 FSml | +NORM | -NORM +0 -0 +INF -INF gNaN sNaN
NORM | +NORM | MAC MAC MAC MAC +INF -INF gNaN -
-NORM MAC MAC MAC MAC -INF +INF gNaN -
+0 MAC MAC MAC MAC - - gNaN -
-0 MAC MAC MAC MAC - - gNaN -
+INF +INF -INF - - +INF -INF qNaN -
-INF -INF +INF - - -INF +INF qNaN -
qNaN gNaN qNaN qNaN qNaN qNaN gqNaN gqNaN -
sNaN - - - - - - - -
+0 +NORM | MAC MAC +0 +0 +INF -INF qNaN -
-NORM MAC MAC +0 +0 -INF +INF qNaN -
+0 +0 +0 +0 +0 - - gqNaN -
-0 +0 +0 +0 +0 - - gqNaN -
+INF +INF -INF - - +INF -INF gNaN -
-INF -INF +INF - - -INF +INF qNaN -
gNaN gqNaN gqNaN gNaN qNaN gqNaN gqNaN gqNaN -
sNaN - - - - - - - -
-0 +NORM | MAC MAC +0 -0 +INF -INF gNaN -
-NORM MAC MAC -0 +0 -INF +INF gNaN -
+0 +0 -0 +0 -0 - - qNaN -
-0 -0 +0 -0 +0 - - gqNaN -

272 FEMADD

Chapter 2 Instruction description

+INF +INF -INF - - +INF -INF gqNaN -

-INF -INF +INF - - -INF +INF qNaN -

gqNaN gNaN gNaN gNaN gNaN gNaN gqNaN gNaN -

sNaN - - - - - - - -

+INF +NORM +INF +INF +INF +INF +INF - qNaN -
-NORM +INF +INF +INF +INF - +INF qNaN -

+0 +INF +INF +INF +INF - - qNaN -

-0 +INF +INF +INF +INF - - qNaN -

+INF +INF - - - +INF - qNaN -

-INF - +INF - - - +INF qNaN -

qNaN qNaN qNaN qNaN gqNaN gNaN qNaN gNaN -

sNaN - - - - - - - -

-INF +NORM -INF -INF -INF -INF - -INF qNaN -
-NORM -INF -INF -INF -INF -INF - qNaN -

+0 -INF -INF -INF -INF - - qNaN -

-0 -INF -INF -INF -INF - - qNaN -

+INF - -INF - - - -INF qNaN -

-INF -INF - - - -INF - qNaN -

qNaN gqNaN qNaN qNaN gNaN gqNaN qNaN gNaN -

sNaN - - - - - - - -

qNaN NORM qNaN qNaN qNaN qNaN qNaN qNaN qNaN -
0 qNaN qNaN qNaN qNaN - - gNaN -

INF gNaN qNaN - - gqNaN qNaN gqNaN -

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN -

sNaN - - - - - - - -

sNaN all types - - - - - - - -

EC Flag FSm?2

FSm3 FSml +NORM | -NORM +0 -0 +INF -INF gNaN sNaN

NORM | +NORM | MAC MAC MAC MAC 0 0 0 \

-NORM MAC MAC MAC MAC 0 0 0 \

+0 MAC MAC MAC MAC \ \ 0 \

-0 MAC MAC MAC MAC \Y \Y 0 \

+INF \4 \ 0 0 0 \

-INF \4 \4 0 0 0 \4

qNaN 0 0 0 0 0 0 0 \

sNaN \ \ \ \ \ \ \ \

+0 +NORM | MAC MAC 0 0 0 0 0 \

-NORM MAC MAC 0 0 0 0 0 \Y

+0 0 0 0 0 \Y \% 0 \4

-0 0 0 0 0 \Y \Y 0 \

+INF 0 0 \% \% 0 0 0 \

-INF 0 0 v A% 0 0 0 A%

qNaN 0 0 0 0 0 0 0 v

sNaN \Y \Y \Y \Y \% \% \% \Y

-0 +NORM | MAC MAC 0 0 0 0 0 \Y

FMADD 273

Chapter 2 Instruction description

-NORM

£
>
)

£
>
a

+INF

+INF

gqNaN

sNaN

qNaN

NORM

0

INF

qNaN

sNaN

sNaN

+

Z

o

=

<
<|<|lo|lo|olo|<c|ol<c|o|lo|o|lolo|c|locolo|lcd|lolo|lo|lo|<c|lo|o|o o |

all Types

<|<|oclo|lo|ol<c|o|loc|<cd|lo|lo|lo|clc|lo|lc|o|lo|lo|lo|lo|<c |o e |o|o |

<|<lo|l<|olo|<c|lol<c|<|olo|olo|c|olc|<|olo|lo|lo|<c|lao|<c |< o |o |

<l <|lo|l<|lo|lo<c|lo|ld|<c|o|lo|lo|loi<lo<|I< ool |lo L < |lo o |

<|<|o|lol<|ol<|ol<|lolf|I< <ol |oloi<IfI< oI ook I< e

<|<|o|lol<|ol<|olo<|< < o< |lol<|lolfi<IK ool |< e

<|<|lo|lo|olo|<c|o|o|o|c|o|olo|c|ocolo|lo|lcolo|lo|lo|<c|lo|o |o o o |

ST RSE RS RS RS RS RS RS Bl ESE R RSl ESE Rl RS N N A R S R SR R R S A

(1-1) MAC

Calculation result

Data Output

EC Flag

v < Oxff7fffff

Oxff7fffff <v < 0x80800000

*/ .

0/1

0x80800000<v <0

0

+0/-0

0 < v < 0x00800000

0x00800000 < v < Ox7f7fffff

*/ .

OX7f7fffff < v

Data Output

FSm?2

FSm3

FSm1 +NORM

-NORM

+0

-0

gNaN

sNaN

NORM

274 FMADD

+NORM | MAC

MAC

MAC

MAC

gNaN

gNaN

-NORM MAC

MAC

MAC

MAC

gNaN

gNaN

+0 MAC

MAC

MAC

MAC

gqNaN

gqNaN

gqNaN

Chapter 2 Instruction description

-0 MAC MAC MAC MAC gNaN gNaN gNaN gNaN
+INF -INF +INF gNaN gNaN -INF +INF gNaN gNaN
-INF +INF -INF gNaN gNaN +INF -INF gNaN gNaN

gNaN gNaN gNaN gNaN gNaN gNaN gNaN gNaN gNaN
sNaN gNaN gNaN gNaN qNaN qNaN qNaN gNaN gNaN

+0 +NORM | MAC MAC +0 +0 -INF +INF gNaN gqNaN
-NORM MAC MAC +0 +0 +INF -INF qNaN qNaN

+0 +0 +0 +0 +0 qNaN qNaN qNaN gqNaN

-0 +0 +0 +0 +0 qNaN qNaN qNaN gqNaN

+INF -INF +INF qNaN gqNaN -INF +INF gqNaN qNaN

-INF +INF -INF gqNaN qNaN +INF -INF qNaN qNaN

qNaN gNaN qNaN gqNaN qNaN gqNaN gqNaN qNaN gNaN
sNaN qNaN gqNaN qNaN qNaN qNaN qNaN qNaN gNaN

-0 +NORM | MAC MAC -0 +0 -INF +INF gNaN qNaN
-NORM MAC MAC +0 -0 +INF -INF qNaN qNaN

+0 -0 +0 -0 +0 gqNaN gqNaN qNaN gNaN

-0 +0 -0 +0 -0 qNaN qNaN qNaN qNaN

+INF -INF +INF gqNaN qNaN -INF +INF gNaN gqNaN

-INF +INF -INF gNaN gqNaN +INF -INF gqNaN qNaN

gqNaN gNaN qNaN gqNaN gNaN gqNaN qNaN gqNaN gNaN
sNaN qNaN gNaN qNaN qNaN qNaN qNaN qNaN gqNaN

+INF +NORM | +INF +INF +INF +INF +INF qNaN qNaN gqNaN
-NORM +INF +INF +INF +INF qNaN +INF qNaN qNaN
+0 +INF +INF +INF +INF gqNaN gqNaN gqNaN gNaN

-0 +INF +INF +INF +INF qNaN qNaN qNaN qNaN
+INF +INF qNaN qNaN gqNaN +INF qNaN qNaN gqNaN
-INF +INF gNaN gNaN gNaN gNaN +INF qNaN gqNaN
gqNaN gqNaN qNaN gqNaN gNaN qNaN gqNaN qNaN gqNaN
sNaN qNaN gqNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF +NORM | -INF -INF -INF -INF qNaN -INF qNaN qNaN
-NORM -INF -INF -INF -INF -INF qNaN qNaN qNaN

+0 -INF -INF -INF -INF gNaN gNaN gqNaN gqNaN

-0 -INF -INF -INF -INF qNaN qNaN qNaN gqNaN

+INF -INF qNaN gNaN gqNaN -INF qNaN qNaN gqNaN

-INF gNaN -INF gqNaN gNaN gNaN -INF qNaN gNaN

gqNaN gNaN qNaN gqNaN qNaN qNaN gNaN gqNaN gNaN
sNaN qNaN gNaN qNaN qNaN qNaN qNaN qNaN gNaN

qNaN NORM gNaN gNaN gNaN gNaN gNaN gNaN gNaN gNaN
0 gNaN gqNaN gqNaN gqNaN gqNaN gqNaN gqNaN gNaN
INF gNaN qNaN gNaN gNaN gNaN qNaN gqNaN gNaN
qNaN qNaN gNaN qNaN qNaN qNaN qNaN qNaN gNaN
sNaN gNaN qNaN qNaN qNaN gqNaN qNaN qNaN gqNaN

sNaN

all types gNaN gNaN gNaN gNaN gNaN gqNaN gNaN gNaN

FMADD 275

Chapter 2 Instruction description

EC Flag FSm2

FSm3 FSml +NORM | -NORM -0 +INF -INF gNaN sNaN

NORM | +tNORM - - - - - - -

-NORM - - - - - - -

+0 - - - - - - -

-0 - - - - - - -

+INF - - - - - - -

-INF - - - - - - -

qNaN - - - - - - -

sNaN - - - - - - -

+0 +NORM - - - - - - -

-NORM - - - - - - -

+0 - - - - - - -

-0 - - - - - - -

+INF - - - - - - -

-INF - - - - - - -

qNaN - - - - - - -

sNaN - - - - - - -

-0 +NORM - - - - - - -

-NORM - - - - - - -

+0 - - - - - - -

-0 - - - - - - -

+INF - - - - - - -

-INF - - - - - - -

gNaN - - - - - - -

sNaN - - - - - - -

+INF | +NORM - - - - - - -

-NORM - - - - - - -

+0 - - - - - - -

-0 - - - - - - -

+INF - - - - - - -

-INF - - - - - - -

gNaN - - - - - - -

sNaN - - - - - - -

-INF +NORM - - - - - - -

-NORM - - - - - - -

+0 - - - - - - -

-0 - - - - - - -

+INF - - - - - - -

-INF - - - - - - -

gNaN - - - - - - -

sNaN - - - - - - -

qNaN NORM - - - - - - -

0 - - - - - - -

INF - - - - - - -

gNaN - - - - - - -

sNaN - - - - - - -

sNaN all types - - - - - - -

276 FMADD

(2-1) MAC

Calculation result Data Output| EC Flag
v < Oxff7fffff -INF -
Oxff7fffff <v < 0x80800000 * -
0x80800000<v <0 -0 -
0 -0 /40 -
0 < v < 0x00800000 +0 -
0x00800000 < v < OX7f7fffff * -
Ox7f7fffff < v +INF -

Chapter 2 Instruction description

FMADD 277

Chapter 2 Instruction description

FMS UB Compound instructions of multiplication and
subtraction of the floating-point data
FMSUB FSm1, FSm2, FSm3, FSn %%

o
Operation | eo 1+FSm2) - FSm3) -> FSn
The contents of the register (FSm3) is subtracted from the result of multiplying the contents of the
register (FSm1) by the contents of the register (FSm2) , and the result of subtraction is stored in the
register (FSn).
The purpose register is| one of FS0-FS7. EC flag FCC flag Size
A 1 i z
ssembler mnemonic Note VIZIolul I LIGIElU
fmsub FSm1, FSm2, FSm3, FSn AlO|A| Al A - . 4

Flag change

VF: This is "1" when the source data is any of the followings: sNaN, (£INF)*(£0), (+INF)+(-INF),
(-INF)+(+INF), or (£ INF)-(+INF). This is "0" in the other cases.

ZF: This is always "0".

OF: This is "1" when the operation result is greater than the positive maximum value and smaller than the
negative maximum value. This is "0" in other cases.

UF: This is "1" when the operation result is not "0" and is between £2Emin, and this is "0" in other cases.

IF: This is "1" when the operation result is inaccurate, and this is "0" in other cases.

LF: This is not changed.

GF: This is not changed.

EF: This is not changed.

UF: This is not changed.

G The purpose register is one of FS0-FS7.
(1) When the FPU operational exception enable flag is "1"
Data Output FSm2
FSm3 FSml | +NORM | -NORM +0 -0 +INF -INF gqNaN sNaN
NORM | +NORM | MAC MAC MAC MAC +INF -INF gNaN -
-NORM MAC MAC MAC MAC -INF +INF gNaN -
+0 MAC MAC MAC MAC - - gqNaN -
-0 MAC MAC MAC MAC - - gqNaN -
+INF +INF -INF - - +INF -INF gNaN -
-INF -INF +INF - - -INF +INF gNaN -
gqNaN gNaN qNaN gqNaN qNaN qNaN qNaN qNaN -
sNaN - - - - - - - -
+0 +NORM | MAC MAC +0 -0 +INF -INF gNaN -
-NORM MAC MAC -0 +0 -INF +INF gNaN -
+0 +0 -0 +0 -0 - - qNaN -
-0 -0 +0 -0 +0 - - qNaN -
+INF +INF -INF - - +INF -INF gNaN -
-INF -INF +INF - - -INF +INF gNaN -
gqNaN qNaN qNaN gqNaN gNaN gqNaN gqNaN gqNaN -
sNaN - - - - - - - -
-0 +NORM | MAC MAC +0 +0 +INF -INF gNaN -
-NORM MAC MAC +0 +0 -INF +INF gNaN -
+0 +0 +0 +0 +0 - - qNaN -
-0 +0 +0 +0 +0 - - qNaN -

278 FMSUB

Chapter 2 Instruction description

+INF +INF -INF - - +INF -INF gqNaN -

-INF -INF +INF - - -INF +INF gqNaN -

gqNaN gNaN gNaN gNaN gNaN gNaN gqNaN gNaN -

sNaN - - - - - - - -

+INF +NORM -INF -INF -INF -INF - -INF qNaN -
-NORM -INF -INF -INF -INF -INF - qNaN -

+0 -INF -INF -INF -INF - - qNaN -

-0 -INF -INF -INF -INF - - gqNaN -

+INF - -INF - - - -INF qNaN -

-INF -INF - - - -INF - qNaN -

qNaN qNaN qNaN qNaN gNaN gqNaN qNaN gqNaN -

sNaN - - - - - - - -

-INF +NORM +INF +INF +INF +INF +INF - qNaN -
-NORM +INF +INF +INF +INF - +INF qNaN -

+0 +INF +INF +INF +INF - - qNaN -

-0 +INF +INF +INF +INF - - qNaN -

+INF +INF - - - +INF - qNaN -

-INF - +INF - - - +INF qNaN -

qNaN gqNaN qNaN qNaN gNaN gqNaN qNaN gqNaN -

sNaN - - - - - - - -

qNaN NORM qNaN qNaN qNaN qNaN qNaN qNaN qNaN -
0 gqNaN gNaN gqNaN gNaN - - gqNaN -

INF gNaN qNaN - - gqNaN qNaN qNaN -

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN -

sNaN - - - - - - - -

sNaN all types - - - - - - - -

EC Flag FSm2

FSm3 FSml +NORM | -NORM +0 -0 +INF -INF gNaN sNaN

NORM | +NORM | MAC MAC MAC MAC 0 0 0 \Y

-NORM MAC MAC MAC MAC 0 0 0 \Y

+0 MAC MAC MAC MAC \Y \Y 0)\

-0 MAC MAC MAC MAC \Y \Y% 0 \Y

+INF \Y \Y 0 0 0 \Y

-INF \Y \Y 0 0 0 \Y

gqNaN 0 0 0 0 0 0 0 \Y

sNaN \Y% \% \% \% \Y% \Y% \Y% \%

+0 +NORM | MAC MAC 0 0 0 0 0 \%

-NORM MAC MAC 0 0 0 0 0 \%

+0 0 0 0 0 \Y% \Y% 0 \Y

-0 0 0 0 0 \Y% \Y% 0 \%

+INF 0 0 \% \% 0 0 0 \%

-INF 0 0 A% A% 0 0 0 v

gNaN 0 0 0 0 0 0 0 A%

sNaN \Y% v v v \Y% \Y% \Y% v

-0 +NORM | MAC MAC 0 0 0 0 0 A%

FMSUB 279

Chapter 2 Instruction description

-NORM MAC

MAC

qNaN

sNaN

+INF

+NORM

-NORM

+0

-0

+INF

qNaN

sNaN

+NORM

-NORM

+0

-0

+INF

qNaN

sNaN

gqNaN

NORM

0

INF

qNaN

sNaN

sNaN

<|<|lo|lo|olo|<c|ol<c|o|lo|o|olo|c|oclo|lcd|lolo|lo|lo|<c|o|o|o | |

all Types

<|<|olo|lo|oj<c|o|loc|<cd|lo|lo|lo|clc|lo|l<|o|lo|lo|lo|lo|<c|o e |o |o |

<|<lo|l<|olo|<c|lol<c|<|o|lololo|c|olc|<|olo|lo|lo|l<cla|<c |< |o o |

<l <|lo|l<|lo|lo<c|lo|lc|<|o|lco|loco|loi<loI<|I<|ololcolao|I<|lo <L < | |o |
<|<|olo|<|ol< o< o< || |o<|coloi<|I<|I<|o<IK|olcIe K |I< |o

<|<|o|lol<|ol<|olo|<LI< o< |lol<|lolf <K oK< |e

<|<|lo|lo|olo|<c|o|o|lo|loc|o|olo|<c|olo|lo|lcolo|lo|o|<c|lo|lo |o|o o |

ST R RSE RS RS RS RS RS ESE BN ESE R RSl RSl R RS N N A R S R SR R R S A

(1-1)MAC

Calculation result

Data Output

EC Flag

v < Oxff7fffff

Oxff7fffff <v < 0x80800000

*/_

0/1

0x80800000<v <0

0

+0/-0

0 < v < 0x00800000

0x00800000 < v < Ox7f7fffff

*/_

OX7f7fffff < v

(2) When the FPU operational exception enable

flag is "0"

Data Output

FSm3

FSm1 +NORM

-NORM

+0

-0 +INF

gNaN

sNaN

NORM

280 FMSUB

+NORM | MAC

MAC

MAC

MAC +INF

gNaN

gNaN

-NORM MAC

MAC

MAC

MAC -INF

gNaN

gNaN

+0 MAC

MAC

MAC

MAC gqNaN

gqNaN

gqNaN

Chapter 2 Instruction description

-0 MAC MAC MAC MAC gNaN gNaN gNaN gNaN
+INF +INF -INF gNaN gNaN +INF -INF gNaN gNaN
-INF -INF +INF gNaN gNaN -INF +INF gNaN gNaN

qNaN gNaN gqNaN gNaN gNaN gNaN gNaN gNaN gqNaN
sNaN gNaN gqNaN gNaN gNaN gNaN gqNaN gNaN gNaN

+0 +NORM | MAC MAC +0 -0 +INF -INF gNaN qNaN
-NORM MAC MAC -0 +0 -INF +INF gNaN qNaN

+0 +0 -0 +0 -0 qNaN qNaN qNaN gqNaN

-0 -0 +0 -0 +0 qNaN qNaN qNaN gqNaN

+INF +INF -INF qNaN gNaN +INF -INF gqNaN qNaN

-INF -INF +INF qNaN gqNaN -INF +INF gqNaN qNaN

gqNaN qNaN gNaN gNaN qNaN qNaN qNaN qNaN gNaN
sNaN gNaN qNaN gqNaN qNaN gqNaN qNaN qNaN gNaN

-0 +NORM | MAC MAC +0 +0 +INF -INF gNaN qNaN
-NORM MAC MAC +0 +0 -INF +INF gqNaN qNaN

+0 +0 +0 +0 +0 gqNaN qNaN gqNaN gNaN

+0 +0 +0 +0 +0 gNaN gqNaN qNaN gNaN

+INF +INF -INF gqNaN gNaN +INF -INF gNaN gNaN

-INF -INF +INF gqNaN qNaN -INF +INF gNaN gqNaN

gqNaN gNaN gNaN gNaN gNaN gqNaN qNaN gqNaN gNaN
sNaN gNaN qNaN gqNaN gqNaN gNaN qNaN gqNaN gNaN

+INF +NORM -INF -INF -INF -INF qNaN -INF qNaN qNaN
-NORM -INF -INF -INF -INF -INF qNaN qNaN gqNaN

+0 -INF -INF -INF -INF qNaN gqNaN qNaN gNaN

-0 -INF -INF -INF -INF gqNaN gqNaN gqNaN gqNaN

+INF gNaN -INF gqNaN qNaN qNaN -INF qNaN qNaN

-INF -INF qNaN qNaN gqNaN -INF qNaN qNaN qNaN

gNaN gNaN gqNaN gqNaN gqNaN gqNaN gqNaN qNaN gqNaN
sNaN gNaN qNaN gqNaN gqNaN qNaN gqNaN qNaN gqNaN

-INF +NORM +INF +INF +INF +INF +INF qNaN qNaN qNaN
-NORM +INF +INF +INF +INF qNaN +INF qNaN gqNaN
+0 +INF +INF +INF +INF gqNaN qNaN qNaN qNaN

-0 +INF +INF +INF +INF gNaN qNaN gqNaN gqNaN
+INF +INF gqNaN qNaN gNaN +INF qNaN qNaN gNaN
-INF gqNaN +INF gqNaN qNaN gqNaN +INF gNaN gqNaN
gNaN gNaN gqNaN gNaN gqNaN gqNaN gqNaN qNaN gNaN
sNaN gNaN qNaN gNaN gqNaN gqNaN gqNaN gqNaN gNaN

qNaN NORM gNaN gqNaN gqNaN qNaN qNaN qNaN qNaN gqNaN
0 gqNaN qNaN gNaN qNaN qNaN qNaN qNaN gqNaN
INF gNaN gqNaN gqNaN gqNaN gqNaN gqNaN gqNaN gNaN
gNaN gNaN qNaN gNaN gNaN gqNaN qNaN gqNaN gNaN
sNaN gqNaN qNaN gNaN qNaN gqNaN qNaN qNaN gNaN

sNaN all types | gNaN qNaN gqNaN gNaN gNaN qNaN qNaN qNaN

FMSUB 281

Chapter 2 Instruction description

EC Flag FSm2
FSm3 FSml -NORM -0 +INF -INF gNaN sNaN
NORM | +NORM | TNORM - : : - - -
-NORM) - - - - - -
+0) - - - - - -
-0 B - - - - - -
+INF) - - - - - -
-INF B - - - - - -
gqNaN) - - - - - -
sNaN) - - - - - -
+0 +NORM) - - - - - -
-NORM) - - - - - -
+0) - - - - - -
-0 B - - - - - -
+INF) - - - - - -
-INF B - - - - - -
qNaN) - - - - - -
sNaN) - - - - - -
-0 +NORM) - - - - - -
-NORM) - - - - - -
+0 . - - - - - -
-0 B - - - - - -
+INF) - - - - - -
-INF B - - - - - -
qNaN) - - - - - -
sNaN) - - - - - -
+INF | +NORM) - - - - - -
-NORM) - - - - - -
+0 . - - - - - -
-0 - - - - - - -
+INF) - - - - - -
-INF B - - - - - -
qNaN) - - - - - -
sNaN) - - - - - -
AINF | +NORM) - - - - - -
-NORM) - - - - - -
+0 . - - - - - -
-0 - - - - - - -
+INF) - - - - - -
-INF B - - - - - -
qNaN) - - - - - -
sNaN) - - - - - -
gNaN | NORM) - - - - - -
0 - - - - - - -
qNaN) - - - - - -
sNaN) - - - - - -
sNaN | all types) - - - - - -

282 FMSUB

(2-1) MAC

Calculation result Data Output| EC Flag

v < Oxff7fffff -INF -

Oxff7fffff <v < 0x80800000 * -

0x80800000<v <0 -0 -

0 -0 /40 -

0 < v < 0x00800000 +0 -

0x00800000 < v < OX7f7fffff * -

Ox7f7fffff < v +INF -

Chapter 2 Instruction description

FMSUB 283

Chapter 2 Instruction description

FNMADD

Compound instructions of multiplication
and addition of the floating-point data

FNMADD FSm1, FSm2, FSm3,FSn

T

Operation | (-(FSm1*FSm2) + FSm3) -> FSn

in the register (FSn). The purpose register is one of FS0-FS7.

The contents of the register (FSm3) is added to the result of multiplying the contents of the register
(FSm1), the contents of the register (FSm2) and "-1" by each other, and the result of addition is stored

Assembler mnemonic

Note

EC flag

FCC flag

Size

Z

G

E

U

fnrmadd FSm1, FSm2, FSm3, FSn

0

- 4

Flag change

ZF: This is always "0".

LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

negative maximum value.

This is "0" in all other cases.

IF: This is "1" when the operation result is inaccurate, and this is "0" in all other cases.

VF: This is "1" when the source data is any of the followings: sNaN, (£INF)*(£0), (+INF)+(-INF),
(-INF)+(+INF), or (£ INF)-(£INF). This is "0" in allother cases.

OF: This is "1" when the operation result is greater than the positive maximum value and smaller than the

UF: This is "1" when the operation result is not "0" and is between £2Emin, and this is "0" in all other cases.

G The purpose register is one of the FS0-FS7.
(1) When the FPU operational exception enable flag is "1"
Data Output FSm2
FSm3 FSml | +NORM | -NORM +0 -0 +INF gqNaN sNaN
NORM | +NORM | MAC MAC MAC MAC -INF gNaN -
-NORM MAC MAC MAC MAC +INF gNaN -
+0 MAC MAC MAC MAC - gqNaN -
-0 MAC MAC MAC MAC - gqNaN -
+INF -INF +INF - - -INF gNaN -
-INF +INF -INF - - +INF gNaN -
qNaN gNaN qNaN gqNaN gqNaN gqNaN qNaN -
sNaN - - - - - - -
+0 +NORM | MAC MAC +0 +0 -INF gNaN -
-NORM MAC MAC +0 +0 +INF gNaN -
+0 +0 +0 +0 +0 - qNaN -
-0 +0 +0 +0 +0 - qNaN -
+INF -INF +INF - - -INF gNaN -
-INF +INF -INF - - +INF gNaN -
gNaN gqNaN qNaN gNaN gNaN gqNaN gqNaN -
sNaN - - - - - - -
-0 +NORM | MAC MAC -0 +0 -INF gNaN -
-NORM MAC MAC +0 -0 +INF gNaN -
+0 -0 +0 -0 +0 - gNaN -
-0 +0 -0 +0 -0 - qNaN -

284 FNMADD

Chapter 2 Instruction description

+INF -INF +INF - - +INF -INF gNaN -

-INF +INF -INF - - -INF +INF gqNaN -

gqNaN gNaN gNaN gNaN gNaN gNaN gqNaN gNaN -

sNaN - - - - - - - -

+INF +NORM +INF +INF +INF +INF - +INF qNaN -
-NORM +INF +INF +INF +INF +INF - qNaN -

+0 +INF +INF +INF +INF - - qNaN -

-0 +INF +INF +INF +INF - - qNaN -

+INF - +INF - - - +INF qNaN -

-INF +INF - - - +INF - qNaN -

qNaN qNaN qNaN qNaN gNaN gqNaN qNaN gqNaN -

sNaN - - - - - - - -

-INF +NORM -INF -INF -INF -INF -INF - qNaN -
-NORM -INF -INF -INF -INF - -INF qNaN -

+0 -INF -INF -INF -INF - - qNaN -

-0 -INF -INF -INF -INF - - qNaN -

+INF -INF - - - -INF - qNaN -

-INF - -INF - - - -INF qNaN -

qNaN gqNaN qNaN qNaN gNaN qNaN qNaN gqNaN -

sNaN - - - - - - - -

qNaN NORM qNaN qNaN qNaN qNaN qNaN qNaN qNaN -
0 qNaN gqNaN gqNaN gNaN - - gqNaN -

INF gqNaN gqNaN - - qNaN qNaN qNaN -

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN -

sNaN - - - - - - - -

sNaN all types - - - - - - - -

EC Flag FSm2

FSm3 FSm1 +NORM | -NORM +0 -0 +INF -INF gNaN sNaN

NORM | +NORM MAC MAC MAC MAC 0 0 0 Vv

-NORM MAC MAC MAC MAC 0 0 0 \Y

+0 MAC MAC MAC MAC \ \ 0 \Y

-0 MAC MAC MAC MAC \ \ 0 Vv

+INF \4 \ 0 0 0 Vv

-INF \4 \4 0 0 0 \Y

qNaN 0 0 0 0 0 0 0 \

sNaN \ \4 \ \ \ \Y

+0 +NORM MAC MAC 0 0 0 0 0 \Y

-NORM MAC MAC 0 0 0 0 0 Vv

+0 0 0 0 0 A\ A\ 0 A\

-0 0 0 0 0 A\ A\ 0 Vv

+INF 0 0 \% \% 0 0 0 Vv

-INF 0 0 \% \% 0 0 0 Vv

qNaN 0 0 0 0 0 0 0 A\

sNaN A\ \% \ \% A\ A\ A\ Vv

-0 +NORM MAC MAC 0 0 0 0 0 Vv

FNMADD 285

Chapter 2 Instruction description

-NORM MAC

MAC

qNaN

sNaN

+INF

+NORM

-NORM

+0

-0

+INF

qNaN

sNaN

+NORM

-NORM

+0

-0

+INF

qNaN

sNaN

gqNaN

NORM

0

INF

qNaN

sNaN

sNaN

<|<|lo|lo|olo|<c|ol<c|o|lo|o|olo|c|oclo|lcd|lolo|lo|lo|<c|o|o|o | |

all Types

<|<|olo|lo|oj<c|o|loc|<cd|lo|lo|lo|clc|lo|l<|o|lo|lo|lo|lo|<c|o e |o |o |
<|<lo|l<|olo|<c|lol<c|<|o|lololo|c|olc|<|olo|lo|lo|l<cla|<c |< |o o |

<l <|lo|l<|lo|lo<c|lo|lc|<|o|lco|loco|loi<loI<|I<|ololcolao|I<|lo <L < | |o |

<|<|o|loi<|ol<|ol<|eoiLI< <o |loloi<IfI< oI |loelelk < |e

<|<|o|lol<|ol<|olo|<LI< o< |lol<|lolf <K oK< |e

<|<|lo|lo|olo|<c|o|o|lo|loc|o|olo|<c|olo|lo|lcolo|lo|o|<c|lo|lo |o|o o |

ST R RSE RS RS RS RS RS ESE BN ESE R RSl RSl R RS N N A R S R SR R R S A

(1-1) MAC

Calculation result

Data Output

EC Flag

vV < Oxff7fffff

(0)

Oxff7fffff <v < 0x80800000

*/ .

0/1

0x80800000<v <0

0

+0/-0

0 < v < 0x00800000

0x00800000 < v < Ox7f7fffff

*/ .

OX7f7fffff < v

(2) When the FPU operational exception enable flag is "0"

Data Output

FSm3

FSml +NORM

-NORM +0

-0

gNaN

sNaN

NORM

286 FNMADD

+NORM | MAC

MAC MAC

MAC

gNaN

gNaN

-NORM MAC

MAC MAC

MAC

gNaN

gNaN

+0 MAC

MAC MAC

MAC

gNaN

gNaN

Chapter 2 Instruction description

-0 MAC MAC MAC MAC gNaN gNaN gNaN gNaN
+INF -INF +INF gNaN gNaN -INF +INF gNaN gNaN
-INF +INF -INF gNaN gNaN +INF -INF gNaN gNaN

qNaN gNaN gqNaN gNaN gNaN gNaN gNaN gNaN gqNaN
sNaN gNaN gqNaN gNaN gNaN gNaN gqNaN gNaN gNaN

+0 +NORM | MAC MAC +0 +0 -INF +INF gNaN qNaN
-NORM MAC MAC +0 +0 +INF -INF qNaN qNaN

+0 +0 +0 +0 +0 qNaN qNaN qNaN gqNaN

-0 +0 +0 +0 +0 qNaN qNaN qNaN gqNaN

+INF -INF +INF qNaN gNaN -INF +INF gqNaN qNaN

-INF +INF -INF qNaN gqNaN +INF -INF gqNaN qNaN

qNaN qNaN gqNaN gNaN qNaN qNaN qNaN qNaN gNaN
sNaN gNaN qNaN gqNaN qNaN gqNaN qNaN qNaN gNaN

-0 +NORM | MAC MAC -0 +0 -INF +INF gNaN qNaN
-NORM MAC MAC +0 -0 +INF -INF gqNaN qNaN

+0 -0 +0 -0 +0 gqNaN qNaN gqNaN gNaN

-0 +0 -0 +0 -0 gNaN gqNaN qNaN gNaN

+INF -INF +INF qNaN qNaN -INF +INF gNaN gqNaN

-INF +INF -INF gqNaN gNaN +INF -INF gNaN gNaN

qNaN gNaN gqNaN gNaN gNaN gqNaN qNaN gqNaN gNaN
sNaN gNaN qNaN gqNaN gqNaN gNaN qNaN gqNaN gNaN

+INF +NORM +INF +INF +INF +INF gNaN +INF gNaN qNaN
-NORM +INF +INF +INF +INF +INF qNaN qNaN gqNaN
+0 +INF +INF +INF +INF gqNaN qNaN qNaN qNaN

-0 +INF +INF +INF +INF gqNaN gqNaN gqNaN gqNaN
+INF qNaN +INF gqNaN qNaN gqNaN +INF qNaN gqNaN
-INF +INF qNaN qNaN qNaN +INF qNaN qNaN qNaN
gqNaN gNaN gqNaN gqNaN gqNaN gqNaN gqNaN qNaN gqNaN
sNaN gqNaN qNaN gqNaN gqNaN qNaN gqNaN qNaN gqNaN

-INF +NORM -INF -INF -INF -INF -INF qNaN qNaN qNaN
-NORM -INF -INF -INF -INF gqNaN -INF qNaN qNaN

+0 -INF -INF -INF -INF qNaN qNaN qNaN gNaN

-0 -INF -INF -INF -INF gNaN qNaN gqNaN gqNaN

+INF -INF qNaN gqNaN gNaN -INF qNaN qNaN gNaN

-INF gNaN -INF qNaN gqNaN qNaN -INF qNaN gqNaN

gqNaN gNaN gqNaN gNaN gqNaN gqNaN gqNaN qNaN gNaN
sNaN gNaN qNaN gNaN gqNaN gqNaN gqNaN gqNaN gNaN

qNaN NORM gNaN gqNaN gqNaN qNaN qNaN qNaN qNaN gqNaN
0 gNaN qNaN gNaN qNaN qNaN qNaN qNaN gqNaN
INF gNaN gqNaN gqNaN gqNaN gqNaN gqNaN gqNaN gNaN
gqNaN gqNaN qNaN gNaN gNaN gqNaN qNaN gqNaN gNaN
sNaN gNaN qNaN gNaN qNaN gqNaN qNaN qNaN gNaN

sNaN all types | gNaN qNaN gqNaN gNaN gNaN qNaN qNaN qNaN

FNMADD 287

Chapter 2 Instruction description

EC Flag

FSm3

FSm1

+NORM

-NORM

+0

gNaN

sNaN

NORM

+NORM

-NORM

+0

qNaN

sNaN

+INF

+NORM

-NORM

-INF

gNaN

sNaN

288 FNMADD

(2-1) MAC

Calculation result Data Output| EC Flag

v < Oxf7fffff -INF -

Oxff7fffff <v < 0x80800000 * -

0x80800000<v <0 -0 -

0 -0 /40 -

0 < v < 0x00800000 +0 -

0x00800000 < v < Ox7f7fffff * -

Ox7f7fffff < v +INF -

Chapter 2 Instruction description

FNMADD 289

Chapter 2 Instruction description

Compound instructions of multi-
plication and addition of the float-
ing-point data

FNMSUB FSm1, FSm2, FSm3,FSn %%

o
Operation | o 1+ESm2) - FSm3) -> FSn
The contents of the register (FSm3) is subtracted from the result of multiplying the contents of the
register (FSm1), the contents of the register (FSm2) and "-1" by each other, and the result of subtraction
is stored in the register (FSn).
The purpose register is| one of FS0-FS7. EC flag FCC flag Size
A 1 i z
ssembler mnemonic Note VIZIolul I LIGIElU
fnmsub FSm1, FSm2, FSm3, FSn AlO|A]| Al A - . 4

Flag change
VF: This is "1" when the source data is any of the followings: sNaN, (£INF)*(£0), (+INF)+(-INF),
(-INF)+(+INF), or (£ INF)-(+xINF). This is "0" in all other cases.
ZF: This is always "0".
OF: This is "1" when the operation result is greater than the positive maximum value and smaller than the

negative maximum value. This is "0" in all other cases.
UF: This is "1" when the operation result is not "0" and is between £2Emin, and this is "0" in all other cases.
IF: This is "1" when the operation result is inaccurate, and this is "0" in all other cases.
LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

G The purpose register is one of FS0-FS7.
(1) When the FPU operational exception enable flag is "1"
Data Output FSm2
FSm3 FSml | +NORM | -NORM +0 -0 +INF -INF gqNaN sNaN
NORM | +NORM | MAC MAC MAC MAC -INF +INF gNaN -
-NORM MAC MAC MAC MAC +INF -INF gNaN -
+0 MAC MAC MAC MAC - - gqNaN -
-0 MAC MAC MAC MAC - - gqNaN -
+INF -INF +INF - - -INF +INF gNaN -
-INF +INF -INF - - +INF -INF gNaN -
gqNaN gNaN qNaN qNaN qNaN qNaN qNaN qNaN -
sNaN - - - - - - - -
+0 +NORM | MAC MAC +0 +0 -INF +INF gNaN -
-NORM MAC MAC +0 +0 +INF -INF gNaN -
+0 -0 +0 +0 +0 - - qNaN -
-0 +0 -0 +0 +0 - - qNaN -
+INF -INF +INF - - -INF +INF gNaN -
-INF +INF -INF - - +INF -INF gNaN -
gNaN qNaN gqNaN gNaN gNaN gqNaN qNaN gqNaN -
sNaN - - - - - - - -
-0 +NORM | MAC MAC -0 +0 -INF +INF gNaN -
-NORM MAC MAC +0 -0 +INF -INF gNaN -
+0 +0 +0 -0 +0 - - gqNaN -
-0 +0 +0 +0 -0 - - qNaN -

290 FNMSUB

Chapter 2 Instruction description

+INF -INF +INF - - -INF +INF gqNaN -

-INF +INF -INF - - +INF -INF gqNaN -

gqNaN gNaN gqNaN gNaN gNaN gNaN gqNaN gNaN -

sNaN - - - - - - - -

+INF +NORM -INF -INF -INF -INF -INF - qNaN -
-NORM -INF -INF -INF -INF - -INF qNaN -

+0 -INF -INF -INF -INF - - qNaN -

-0 -INF -INF -INF -INF - - qNaN -

+INF -INF - - - -INF - qNaN -

-INF - -INF - - - -INF qNaN -

qNaN qNaN qNaN qNaN qNaN qNaN qNaN gqNaN -

sNaN - - - - - - - -

-INF +NORM +INF +INF +INF +INF - +INF qNaN -
-NORM +INF +INF +INF +INF +INF - qNaN -

+0 +INF +INF +INF +INF - - qNaN -

-0 +INF +INF +INF +INF - - qNaN -

+INF - +INF - - - +INF qNaN -

-INF +INF - - - +INF - qNaN -

qNaN qNaN qNaN gqNaN gNaN gNaN qNaN gqNaN -

sNaN - - - - - - - -

qNaN NORM qNaN qNaN qNaN qNaN qNaN qNaN qNaN -
0 qNaN gNaN qNaN qNaN - - gqNaN -

INF qNaN qNaN - - gqNaN qNaN qNaN -

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN -

sNaN - - - - - - - -

sNaN all types - - - - - - - -

EC Flag FSm2

FSm3 FSml +NORM | -NORM +0 -0 +INF -INF gNaN sNaN

NORM | +NORM MAC MAC MAC MAC 0 0 0 \

-NORM MAC MAC MAC MAC 0 0 0 \

+0 MAC MAC MAC MAC \ \Y 0 \Y

-0 MAC MACO MAC MAC \ \Y 0 \Y

+INF 0 0 \4 \4 0 0 0 \Y

-INF 0 0 \ \4 0 0 0 \

qNaN 0 0 0 0 0 0 0 \

sNaN \ \ \ \ \ \ \ \

+0 +NORM MAC MAC 0 0 0 0 0 \

-NORM MAC MAC 0 0 0 0 0 \Y

+0 0 0 0 0 \ \ 0 \

-0 0 0 0 0 \ \Y 0 \

+INF 0 0 \% \% 0 0 0 \%

-INF 0 0 v v 0 0 0 \%

qNaN 0 0 0 0 0 0 0 A%

sNaN \% \% \Y \Y \Y \% \% \%

-0 +NORM MAC MAC 0 0 0 0 0 A%

FNMSUB 291

Chapter 2 Instruction description

-NORM

MAC

MAC

qNaN

sNaN

+INF

+NORM

-NORM

+0

-0

+INF

qNaN

sNaN

+NORM

-NORM

+0

-0

+INF

-INF

qNaN

sNaN

gqNaN

NORM

0

INF

qNaN

sNaN

sNaN

all Types

<l <|lo|lo|lo|lo|cd|lo|lo<|lolocololo|Id|lo<|lolco|lo|lo|lo|<c o |lo|lc |o |

<|<|olo|lo|ol<c|o|<c|o|loc|lo|lo|clc|lo|lcld|lo|lo|lo|lo|<c|o e |o |o |
<|<lo|l<c|olo|<c|lol<c|<|o|lololo|c|olc|<|olo|lo|lo|l<cla|<c |< |o o |

<l <lo|l<|loco|lo<|lo|lf|<|o|loco|ojlo<|loI<|I< |ololcolaoI< |lo L < | |o |

<|<lo|loi<|ol<|olo<|KI< oK< |lolK|lolfKIK|IoIK|oelelk I |e

<|<|o|lol<|ol<|ol<|leoiLI< <o |oloi<IfI< oI ool I |e

|l <|lo|lo|lo|lo|<c|lo|lo|loco|lo|loclo|lo|c|lo|loco|locoloco|lo|lo|lo|I<c o |lo|lo |l |lo |

IR RSl RS RSl RSl RSl RN BN B Sl B Sl B RSl Rl Sl SN B Sl Rl Rl RSl RSl RSl RS RS RSl ESH RS AT

(1-1) MAC

Calculation result

Data Output

EC Flag

v < Oxff7fffff

Oxff7fffff <v < 0x80800000

*/ .

0/1

0x80800000<v <0

0

+0/-0

0 < v < 0x00800000

0x00800000 < v < Ox7f7fffff

*/ .

OX7f7fffff < v

(2) When the FPU operational exception enable flag is "1"

Data Output

FSm?2

FSm3

FSml

+NORM

-NORM +0

-0

+INF

gNaN

sNaN

292

NORM

+NORM

MAC

MAC MAC

MAC

gNaN

gNaN

-NORM

MAC

MAC MAC

MAC

+INF

gNaN

gNaN

+0

MAC

MAC MAC

MAC

gNaN

gNaN

gNaN

FNMSUB

Chapter 2 Instruction description

-0 MAC MAC MAC MAC gNaN gNaN gNaN gNaN
+INF -INF +INF gNaN gNaN -INF +INF gNaN gNaN
-INF +INF -INF gNaN gNaN +INF -INF gNaN gNaN

gqNaN gNaN gqNaN gNaN gNaN gNaN gNaN gNaN gqNaN
sNaN gNaN gqNaN gNaN gNaN gNaN gqNaN gNaN gNaN

+0 +NORM | MAC MAC -0 +0 -INF +INF gNaN qNaN
-NORM MAC MAC +0 -0 +INF -INF qNaN qNaN

+0 -0 +0 -0 +0 qNaN qNaN qNaN gqNaN

-0 +0 -0 +0 -0 qNaN qNaN qNaN gqNaN

+INF -INF +INF qNaN gNaN -INF +INF gqNaN qNaN

-INF +INF -INF qNaN gqNaN +INF -INF qNaN qNaN

qNaN qNaN gqNaN gNaN qNaN qNaN qNaN qNaN gNaN
sNaN gNaN gqNaN gqNaN qNaN gqNaN qNaN qNaN gNaN

-0 +NORM | MAC MAC +0 +0 -INF +INF gNaN qNaN
-NORM MAC MAC +0 +0 +INF -INF gqNaN qNaN

+0 +0 +0 +0 +0 gqNaN qNaN gqNaN gNaN

-0 +0 +0 +0 +0 gNaN gqNaN qNaN gNaN

+INF -INF +INF qNaN qNaN -INF +INF gNaN gqNaN

-INF +INF -INF qNaN qNaN +INF -INF qNaN gqNaN

qNaN gNaN gqNaN gNaN gNaN gqNaN qNaN gqNaN gNaN
sNaN gNaN gqNaN gqNaN gqNaN gNaN qNaN gqNaN gNaN

+INF | +NORM | -INF -INF -INF -INF -INF gqNaN gNaN gNaN
-NORM -INF -INF -INF -INF gqNaN -INF qNaN gqNaN

+0 -INF -INF -INF -INF qNaN gqNaN qNaN gNaN

-0 -INF -INF -INF -INF gqNaN gqNaN gqNaN gqNaN

+INF -INF qNaN gqNaN qNaN -INF qNaN qNaN qNaN

-INF gNaN -INF qNaN gqNaN gNaN -INF qNaN gqNaN

qNaN gNaN gqNaN gqNaN gqNaN gqNaN gqNaN qNaN gqNaN
sNaN gqNaN gqNaN gqNaN gqNaN qNaN gqNaN qNaN gqNaN

-INF | +NORM | +INF +INF +INF +INF gNaN +INF gNaN gNaN
-NORM +INF +INF +INF +INF +INF qNaN qNaN gqNaN
+0 +INF +INF +INF +INF gqNaN qNaN qNaN qNaN

-0 +INF +INF +INF +INF gNaN qNaN gqNaN gqNaN
+INF qNaN +INF gqNaN qNaN gNaN +INF gqNaN gNaN
-INF +INF qNaN qNaN gqNaN +INF qNaN qNaN gqNaN
qNaN gNaN gNaN gNaN gqNaN gqNaN gqNaN qNaN gNaN
sNaN gNaN gqNaN gNaN gqNaN gqNaN gqNaN gqNaN gNaN

gNaN | NORM | gNaN gNaN gNaN gNaN gNaN gqNaN gNaN gNaN
0 gNaN qNaN gNaN qNaN qNaN qNaN qNaN gqNaN
INF gNaN gqNaN gqNaN gqNaN gqNaN gqNaN gqNaN gNaN
gNaN gqNaN gqNaN gNaN gNaN gqNaN qNaN gqNaN gNaN
sNaN gNaN gNaN gNaN qNaN gqNaN qNaN qNaN gNaN

sNaN | all types | gNaN qNaN gNaN gNaN gNaN gNaN gNaN gNaN

FNMSUB 293

Chapter 2 Instruction description

EC Flag FSm2
FSm3 FSml | +NORM | -NORM -0 +INF -INF gNaN sNaN
NORM | +NORM - - - - - - -
-NORM - - - - - - -
+0 - - - - - - -
-0 - - - - - - -
+INF - - - - - - -
-INF - - - - - - -
gqNaN - - - - - - -
sNaN - - - - - - -
+0 +NORM - - - - - - -
-NORM - - - - - - -
+0 - - - - - - -
-0 - - - - - - -
+INF - - - - - - -
-INF - - - - - - -
qNaN - - - - - - -
sNaN - - - - - - -
-0 +NORM - - - - - - -
-NORM - - - - - - -
+0 - - - - - - -
-0 - - - - - - -
+INF - - - - - - -
-INF - - - - - - -
gqNaN - - - - - - -
sNaN - - - - - - -
+INF | +NORM - - - - - - -
-NORM - - - - - - -
+0 - - - - - - -
-0 - - - - - - -
+INF - - - - - - -
-INF - - - - - - -
gNaN - - - - - - -
sNaN - - - - - - -
JINF |+NORM | - - - - - - -
-NORM - - - - - - -
+0 - - - - - - -
-0 - - - - - - -
+INF - - - - - - -
-INF - - - - - - -
gNaN - - - - - - -
sNaN - - - - - - -
gNaN | NORM - - - - - - -
0 - - - - - - -
INF - - - - - - -
gNaN - - - - - - -
sNaN - - - - - - -
sNaN | all types - - - - - - -

294 FNMSUB

(2-1) MAC

Calculation result Data Output| EC Flag

v < Oxff7fffff -INF -

Oxff7fffff <v < 0x80800000 * -

0x80800000<v <0 -0 -

0 -0 /40 -

0 < v < 0x00800000 +0 -

0x00800000 < v < OX7f7fffff * -

Ox7f7fffff < v +INF -

Chapter 2 Instruction description

FNMSUB 295

Chapter 2 Instruction description

FB CCConditional branch under the floating-point con-

FBCC (d8, PC)

T

Operation| When branch is taken,

program counter of the next instruction. (nPC).

When branch is not taken, The next instruction is executed.

The next instruction is executed.

PC (current instruction address) + CodeSize -> nPC (next instruction PC)

PC (current instruction address) + (sign_ext) d8 -> nPC (next instruction PC)

8-bit displacement (d8) is sign-extended and added to the PC, and the result is written into the

Even if the addition result overflows, this overflow is ignored and the result is written into the PC.

EC flag FCC flag Si
Assembler mnemonic Note Zlolu LIGIE|U 1z¢€

fbeq label E=1 - - - - -] -] - 3
fbne label U=1or L=1 or G=1 - -] - S T I 3
fbgt label G=1 - -] - S T e 3
fbge label G=1or E=1 - -] - S T R 3
fblt label L=1 - - - N 3
fble label L=1 or E=1 - -] - S T e 3
fbuo label u=1 - -] - S T e 3
fblg label L=1 or G=1 - -] - S T R 3
fbleg label L=1 or E=1 or G=1 -0 - - S T R 3
fbug label U=1 or G=1 - -] - S T e 3
fbuge label U=1 or G=1 or E=1 - -] - - - -] - 3
fbul label U=1 or L=1 - - - EI N A 3
fbule label U=1 or L=10orE=1 - - - - - - - 3
fbue label U=1 or E=1 - - - - - -] - 3

Flag change

VF: This is not changed.
ZF: This is not changed.
OF: This is not changed.
UF: This is not changed.
IF: This is not changed.
LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

296 FBCC

Chapter 2 Instruction description

Fl ‘ ‘ Conditional branch only for the loop

under the floating-point condition

FLCC

o T

Operation| When conditional branch is taken
LAR - 4 -> nPC (next instruction PC)

fetch starts for the address loaded to the loop address register (LAR).

is written into the program counter (PC).

branches to the start of the loop registered in the SETLB instruction.

When branch is not taken
PC (current instruction address) + 1 -> nPC (next instruction PC)

The next instruction is executed.

The instruction loaded from the loop instruction register (LIR) is executed and the instruction
At the same time, 4 is subtracted from the instruction fetch address register (LAR) and the result
Even if the subtract result overflows, this overflow is ignored and the result is written into the

program counter (PC). Without coordination with SETLB, the operation cannot be guaranteed.

This is used with the SETLB instruction in order to speed up the loop control, and conditionally

EC flag FCC flag Si
Assembler mnemonic Note viziolu LIGIEIU 1ze

fleq E=1 -l -l - - -] -] -] - 2
fine U=1orL=1or G=1 - - - -] - -] 2
figt G=1 S U U U U O B O
fige G=1 or E=1 N R R R N
fllt L=1 - -T - -1 -] - 2
flle L=1 or E=1 -] - - N
fluo U=1 - - - - - -] -] - 2
fllg L=1 or G=1 -1 - - N I N R
flleg L=1 or E=1 or G=1 N -1 -1 T 2
flug U=1 or G=1 N I I N T R
fluge U=1 or G=1 or E=1 -1 - - N N S I
flul U=1or L=1 -l - - - - - - - 2
flule U=1 or L=1or E=1 B - -1 -] - 2
flue U=1 or E=1 -] - - N N A

Flag change

VF: This is not changed.
ZF: This is not changed.
OF: This is not changed.
UF: This is not changed.
IF: This is not changed.
LF: This is not changed.
GF: This is not changed.
EF: This is not changed.
UF: This is not changed.

FLCC 297

Chapter 3 Directions for using instructions

Chapter 3 Directions for using instructions

Cautions for programming

The 32-bit microcontroller MN103E series has accomplished speedup through the following devices con-

cerningimplementations.

* Speedup of the instruction execution cycle
This has accomplished high-speed execution for Lcc/SETLB/RETF through performing the 5-step pipeline
processing as well as performing the normal pipeline processing and a different processing with specialized

software.

* Speedup of operational frequencies
This has accomplished a speedup of operation frequencies through performing the optimized allocation of
the pipeline stage for processing preventing theimprovement of operatinf frequencies such as flag generation

and alignment/extension of load data.

The description of the pipeline architecture, the cautions for programming about a part of the instruction
description, and the recommendations are shown here for the effective use of the above-mentioned speed-up

methods.

1. Pipeline architecture
This describes the pipeline configuration adopted in the 32-bit microcontroller MN103E series and the op-

erations.

2. Cautions on the instruction description
The cautions are for programming about the instruction description, instruction design and combination.

Please thake note that mulfunctions may be caused if these cautions are not followed.

3. Recommendations on the instruction description

The recommendations are for the instruction description, instruction design and combination. Mulfinctions
are not caused even if the recommended requirements are not fulfilled. However, please take note that the
imcrease in the number of execution cycles may be caused if the requirements are not fulfilled.

4. General on the instruction description

The general shows the examples of generally-used programming.

300 Pipeline architecture

Chapter 3 Directions for using instructions

Pipeline architecture
|

The 32-bit microcontroller MN103E series performs pipeline processing for executing instructions in
order to accomplish high-speed operations. Multiple instructions can be overlapped and parallel-
executed through the pipeline processing.

1-1 Pipeline operation

The 32-bit microcontroller MN103E series executes instructions at the following five-step pipeline

stage.
IF instruction fetch i i
DEC Instruction decryption
EX Execution
MEM Memory acces§
WB | i ; , Write back

IF (Instruction fetch) : This takes in instructions from the memory.

DEC (Instruction decryption) : This decrypts the instructions taken in. This performs the
address calculation of the branch target in a part of the branch
instructions.

EX (Execution) : This performs the operations or address calculation based on
the decryption results.

MEM (Memory access) : This accesses memory in the instructions with memory
access, and generates and stores flags in the instructions with
flag change.

WB (Write back) : This stores operation results in registers.

This aligns, extends and stores the memory access results in
registers.
This sets an instruction queue between the IF and DEC stages, precedently stores instructions from
memory to the take-in instruction queue. If there are the data necessary to decryption and execution in
the instruction queue, the instruction decryption stage is started. When the instruction queue is empty
as imediately after branching or it does not have necessary instruction data, The instruction queue wait
of at least one cycle occurs.

The instruction queue is controlled by hardware, and its function is different depending on core types
even in the MN103E series. Therefore, this chapter describes the cases that there are necessary data in
the instruction queue. Although any special care is unnecessary at making programs, it is necessary to

undestand instruction queue operations of each core at calculating the instruction execution cycle.

Pipelinearchitecture 301

Chapter 3 Directions for using instructions

1-2 Pipeline operations of operations between registers

Each pipeline stage of the operation between registers performs the following operations.

DEC : This decrypts instructions.

EX : This executes operations based on the decrypted results.

MEM : This updates flags based on the operation result in the instruction with
flag change.

WB : This stores the operation result in registers.

The instructions performing this pipeline operation are as follows:

addition and subtraction/ logical operation/ shift instruction/ data transfer instruction between CPU
registers/ data transfer instruction between CPU and FPU registers/ data transfer instruction between
FPU registers.

pec Il >

Instruction decryption

EX

Operation

MEM

Flag generation

WB ! i :

Register writing

1-3 Pipeline operation of data load

Each pipeline stage of the data load performs the folowing operations.

DEC : This decrypts instructions.

EX : This executes address calculation based on the decrypted result and
at the same time, determines the memory space for memory access.

MEM : This reads TLB if necessary, and reads data from memory through
the changed address.

WB : This stores the read data in registers.

The instructions performing this pipeline operation are as follows:
data transfer instruction between memory and CPU registers/ data transfer instruction between memory
and FPU registers.

DEC K

Instruction decryption

EX
Address calculation

MEM S
Memory reading

WB ! i | -
Register writing

302 Pipelinearchitecture

Chapter 3 Directions for using instructions

1-4 Pipeline operations of data store
|

Each pipeline stage of data store performs the following operations.

DEC : This decrypts instructions.

EX : This executes address calculation based on the decrypted result.
MEM : This writes data into memory between the memory stages.

WB : This does not perform this processing.

The instructions performing this pipeline operation are as follows:
data transfer instruction between memory and CPU registers/ data transfer instruction between memory
and FPU registers.

DEC

Instruction decryption

EX

Address calculation

MEM

Memory writing

WB | , !

1-5 Branch pipeline operations

Each pipeline stage of the branch instruction performs the folowing operations.

DEC : This decrypts instructions, and at the same time performs address
calculation for the branch target. This starts reading the branch instruction
based on the calculation result after the next cycle.

EX : This does not perform this processing.
MEM : This does not perform this processing.
WB : This does not perform this processing.

The instructions performing this pipeline operation are conditional branch instructions and others. The
following figure shows the pipeline operations when branching occurs.

IF ranh instrstion Xext instruction > Branch target instruction

DEC)

Instruction decryption] Eratn cht?arget
Address calculation fstruction

EX >

MEM >

WB

Pipeline architecture 303

Chapter 3 Directions for using instructions

1-6 Pipeline operations of SETLB and LCC

Since the instructions are executed at high speed, the processing is not carried out in the order of IF
stage/ DEC stage/ EX stage/ MEM stage/ WB stage as seen in the following pipeline operations of the

instructions, and the instructions are executed by using specilized hardware.

SETLB pipeline operations

< >KNext instruction

Instruction decryption

DEC

EX

LIR write

N

MEM

a2

AN

WB K LAR write X

LCC pipeline operations

&QBranch target+4)Instruction read

IF

< Sttt st

nstruction decryption]

|
ILIR,LAR read :

DEC

EX

MEM

AN e

N
N\

WB

304 Pipelinearchitecture

Chapter 3 Directions for using instructions

1-7 Number of instruction executing cycles
. __|]

This chapter describes the number of the instruction executing cycle in the MN103E series.

This instruction manual has the tables of throughput and latency in the appendix. Throughput shows
the minimum number of the cycles necessary to execute each instruction. Latency shows the number of
the cycles that the subsequent instruction execution has to wait after the cycle for executing each

instruction when each instruction and its subsequent instruction are dependent on each other.

There are the following three cases concerning the dependence between instructions.

(1) Register dependence between instructions

When the destination register of the preceding instruction (the storing-target register of the operation
result) matches the source register of the subsequent instruction.

(2)Flag dependence between instructions

When the subsequent instruction refers to the flag with a possibility of being changed by the preceding
instruction.

(3) When the FPU instruction is subsequent to the CPU load/store instruction.

1-7-1 No dependence between instructions

The number of executing cycles for each instruction is shown as THROUGHPUT in another table
(MNI103E series Throughput & Latency). Some instructions need multiple cycles for the instruction

decode, operation, and memory address.

[Examples] The case of no dependence between instructions

[Instruction strings to be executed]

add 0x80000000,d0 (A)
add 0x80,d0 ...l (B)
add 0x40,d1 ...l)

In the above examples, THROUGHPUT of instructions (A), (B), and (C) are 2/1/1 respectively, and
LATENCY of them are 2/1/1 respectively. The pipeline operation in this example is shown asthe
following figure. The number of instruction executing cycles is determined depending on the number
of the THROUGHPUT cycles because there is no dependence between the instructions in this example.

e e T+ Latorty
DEC D
EX
MEM)
WB = % % g

Pipeline architecture 305

Chapter 3 Directions for using instructions

1-7-2 Register dependence between instructions

When the destination register (the storing target register of the operation result) of the preceding
instruction is the same as the source register of the subsequent instruction, the susequent instruction
cannot be executed until the preceding instruction stores the result. The number of executing cycles for
each instruction is shown as THROUGHPUT in another table (MN103E series Throughput & Latency).

[Examples] The case that there is register dependence between instructions

[Instruction strings to be executed]

mov (a0),d0 (A)
add 0x80,d0 (B)
mov dO,dl (C)

In the above examples, THROUGHPUT of instructions (A), (B), and (C) are 1/1/1 respectively, and
LATENCY of them are 3/1/1 respectively. The pipeline operation in this example is shown as the
following figure. The number of instruction executing cycles of (B) is determined depending on the
number of (A) latency cycles and the number of the (B) and (C) THROUGHPUT cycles because there is
register dependence between (A) and (B).

|IF {mov (a0), do add 0x80,d0X mov d0,d1
)
< —) 4 > P TP : Thrbughput
TP =1 TF’:? TP=11{ LT:Laténcy
DEC
EX >
MEM
WB — _/

306 Pipeline architecture

Chapter 3 Directions for using instructions

The following example shows that there is register dependence in the preceding instruction after two

instructions.

[Examples] The case that there is register dependence between instructions

[Instruction strings to be executed]

mov (a0),do0 (A)
add 0x80,d2 (B)
mov dO.dl c)

In the above examples, THROUGHPUT of instructions (A), (B), and (C) are 1/1/1 respectively, and
LATENCY of them are 3/1/1 respectively. The pipeline operation in this example is shown as the
following figure. Instruction (B) of (A) THROUGHPUT number can be executed because there is no
register dependence between (A) and (B). On the other hand, (C) cannot be executed until the numbers
of (B) THROUGHPUT cycles and (A) LATENCY cycles because there is register dependence between
(A) and (C).

DEC [{ mov (20),d0 X add 0x80,d2 mov d0,d1
> BT -

TP = 1
[T=3 >

EX

MEM

WB D D

TP : Throughput LT : Latency

Pipeline architecture 307

Chapter 3 Directions for using instructions

1-7-3 Flag dependence between instructions

The subsequent instruction cannot be executed until flag updating by the preceding instruction when
the subsequent instruction refers to the flag state of TPSW and FPCR updated by the preceding instruc-

tion.

[Example] Example of flag independence between instructions

[Instruction strings to be executed]
div do,d1 (A)
beq Zero (B)

In the above example, (A) THROUGHPUT is 2, (A) LATENCY is 4, and (B) THROUGHPUT is 3. (B)
refers to the flag updated by the operation of (A). Accordingly (B) is executed until the number of the

(A) LATENCY cycles.
DEC K div (do), a1 beq Zero
< > —p
TP=3 TP =1
< IT=4 >
EX
MEM
WB

TP : Throughput LT : Latency

308 Pipeline architecture

Chapter 3 Directions for using instructions

1-7-4 When the FPU instruction is subsequent to CPU load/store instruction
When the preceding instruction is the CPU load or store instruction, the following instruction cannnot

be executed until CPU completed the load/store instruction, even though there is no trgister and flag
dependence between instructions.

[Example] Example of FPU following CPU load storing instruction

[Instruction strings to be executed]
div do,d1l (A)
beq ZeTr0ve..... (B)

In the above example, (A) THROUGHPUT is 2, (A) LATENCY is 4, and (B) THROUGHPUT is 3. (B)
refers to the flag updated by the operation of (A). Accordingly (B) is executed until the number of the
(A) LATENCY cycles.

DEC mov (a0),d0 fadd fs0,fs1
:WP i »W
LT=3

EX >
MEM C____

WB

TP : Throughput LT : Latency

Pipeline architecture 309

Chapter 3 Directions for using instructions

Cautions on the instruction description

The cautions are not on the programming for instruction description, assignment, and combination.

The next section shows "Recommendations on the instruction description".

310 Cautions on Instruction description

Chapter3 Directions for using instructions

Recommendations on Instruction description
|

The recommendations are for the instruction description, combination and instruction assignment. For
the instruction description of this recommendations, meeting the requirement is not essential, however,
when not meeting the requirement, please take note that the increase of the executing cycle number may
be caused. The recommendations on instruction description consists of the following parts.

[Contents]
It describes the recommended contents.

For some recommended parts, it shows pipeline operation figures.

[Classification]
High-speed processing
This is recommended in order to execute instructions at high speed through
m not causing fluctuation of pipeline operations.
High-speed processing
[Examples]

It describes the programming examples in the assembly language and the explanation about that.
[General example of description]

This is an example of programming without considering pipeline fluctuation by the following
instrution.

[Recommended example of description]

This is an example of executing instructions at high speed with considering in order not to occur
pipeline fluctuation.

[Applicable instructions]

This describes the applicable instructions for recommendations.

In the programming examples, when inserting multiple cycles between instruc-
tions, it is not necessary to be INC instruction for easily understanding. An
instruction with no dependence with the instructions around inserting can be
inserted instead of INC.

Recommendations on Instruction description 3 11

Chapter 3 Directions for using instructions

Preceding instrcution | Following instruction | Assignment Recommendations Position

Allinstructions - - The instructions have two 8-byte instruction buff-
ers, and assigns instructions not as to causing a
lack ofinstruction supply. Multiple cycles is nec-
essary for the decoding of over-4-byte
instrructions in order to decode instructions per 4-
byte unit by the instruction decoder. An instruc-
tion with a large instruction length should not be
used as much as possible.

LCCinstruction Branch target Branch target instruction assigns an instruction 3-1
that m of 8n-4+m has a small address, short (1)
length, and small instruction consumption pef
cycle.

Branch instructions Branch target instruction assigns an instruction 3-1

except for LCC in- that m of 8n+m has a small address, short length, (2)

struction and small instruction consumption per cycle.

BCC/LCC Subsequent Non-branch side assigns an instruction that hay 3-1

instruction short length and small instruction consumption| (3)
percycle.

Instructions except This averages amount of instruction consump{ 3-1

for branch instruc- tion. 4

tions

MOVM (SP),regs | SETLB Instruction Subsequent 1 cycle insertion 3-2

RET/RETF Return target

MOV Dm, MD RETF Instruction Subsequent 3 cycle insertion 3-3

EXT instruction (1

MUL/MULU

DIV/DIVU Subsequent 3-3

CALL/CALLS Branch target 2 cycle insertion)
1 cycle insertion

MOVM (SP), regs Subsequent 1 cycle insertion 33

RET/RETF Return target 3)

CALL/CALLS MOV MDR, Dn Branch target 2 cycle insertion 3-4

DIV/DIVU

3 12 Recommendations on Instruction description

1]

High-speed processing

Chapter3 Directions for using instructions

3-1 Instruction assignment subsequent to branch instruction
. ___|

(1) Assignment of branch target instruction in Lcc instruction

[Contents]

The instruction fetch is carried out by a unit of the 8-byte boundary, and 4-byte stores the branch
instruction of Lcc instruction in LIR. Therefore, in the case of Lcc, m of [8n-4+m (m,n are
integers from O to 7)] locates an instruction length with short instruction length and the long

number of execution cycle at a small address.

[Example]
align 8
mov 0x00,a0
clr do
setlb
mov do,(a0) <- assigned at 8n-4
mov d0,(0x10,a0)
mov do, (0x20,a0) <- assigned at 8n
mov do, (0x30,a0)
inc a0
cmp 0x10,a0
11t

The above program is an example when the branch target of LLT is assigned at 8n-4.

As the result of this assignment, mov d0, (a0) and mov dO, (0x10, a0) are stored in LIR, and the
address 8n is stored in LAR. Therefore, during executing the instructions stored in LIR, CPU
core starts a fetch from the beginning of the 8-byte boundary, and can fetch the maximum 8-byte

instruction.
[Applicable instruction]

<Preceding instruction> Lcc instruction

<Branch target instruction> All instructions

Recommendations on Instruction description 313

Chapter 3 Directions for using instructions

(2) Assignment of branch target instruction in the branch instructions other than LCC

. ‘ [Contents]
High-speed processing i . . . i .
The instruction fetch is carried out by a unit of the 8-byte boundary. Therefore, in the case of the

branch instructions except for Lcc, m of [8n-4+m (m,n are integers from 0 to 7)] locates an
instruction length with long instruction length and the long number of execution cycle at a small

address.

[Example]
align 8
nop
nop
nop
nop
nop
mov 0x00,a0
clr do

LABEL mov do, (a0) <- assigned at 8n

mov d0,(0x10,a0)
mov do, (0x20,a0)
mov do, (0x30,a0)
inc a0
cmp 0x10,a0
blt LABEL

The above program is an example when the branch target of LLT is assigned at 8n-4.

As the result of this assignment, mov d0, (a0) and mov d0, (0x10, a0) are stored in LIR, and the
address 8n is stored in LAR. Therefore, during executing the instructions stored in LIR, CPU
core starts a fetch from the beginning of the 8-byte boundary, and can fetch the maximum 8-byte
instruction. This can decrease a possibility that lack of instruction supply occurs.

[Applicable instruction]
<Preceding instruction> Bcee, IMP, CALL, CALLS , RET, RETF, RETS, RTI, TRAP

<Branch target instruction> All instructions

3 14 Recommendations on Instruction description

o

High-speed processing

o

High-speed processing

Chapter3 Directions for using instructions

(3) Assignment of the instructions subsequent to Bce and Lec
[Contents]
The subsequent instruction, i.e. non-branch side, has a short instruction length and large number

of execution cycles.

[Example]

blt LABEL
MUL DO, D1 <- 2-byte instruction and multiple-cycle
execution

The above program is an example when the branch target of MUL is assigned at non-branch side.
As the result of this assignment, when BLT is non-branch, CPU core can fetch subsequent instruc-
tions during executing MUL instructions. Therefore, it can get a higher performance without the

occurence of the pipeline stall due to the lack of instruction supply.

[Applicable instructions]
<Preceding instruction> Bcc and Lcc instructions

<Subsequent instruction> All instructions

(4) Assignment of the instructions subsequent to all instructions other than the branch instruction

[Contents]

If the instructions that comsumes multiple-byte instructions once (instructions with long instruc-
tions word length) are continuously assigned, instruction comsumption is more than instruction
supply and the lack of instruction supply occurs. Therefore, if the instructions are assigned so as

to comsume instructions on the average, a higher performance is obtained.

[Example]
mov 0x12345678, dO <- 6-byte instruction
mov (a0), d1 <- 1-byte instruction
inc do <- 1-byte instruction
add do, d1 <- 1-byte instruction
mov 0x9abcdef0, d2 <- 6-byte instruction

The above program is an example so as not to assign continuously the instructions with long
instruction length. As the result of this assignment, instruction comsumption can be average, and

pipelkine stall becomes difficult to occur. Accordingly, a higher performance is obtained.

[Applicable instruction]

<Preceding instruction> All instructions other than the following instructions:
Bec, Lee, IMP, CALL, CALLS, RET, RETF, RETS, RTI,
TRAP

<Subsequent instruction> All instructions

Recommendations on Instruction description 315

Chapter 3 Directions for using instructions

3-2 Instruction assignment subsequent to SETLB

|
SETLB performs write into LIR and LAR at high speed through different processing than normal

pipeline processing with special hardware. Therefore, the instructions changing the preceding
LIR and LAR are not executed until the change of LIR and LAR has completed.

[Contents]
It is recommended that more than 1 cycle should be inserted between the instructions changing
LIR and LAR preceding to SETLB in order to run the pipeline smoothly.

[Examples]

[Example]
inc d2
movm (sp),[other] <- Instruction changing LIR and LAR
setlb <- SETLB instruction

A pipeline stall occurs and the operations of SETLB is delayed until the
write of LIR and LAR in MOVM has completed since the operations of
SETLB start before the write of LIR and LAR has completed.

[Recommended description examples]

movm (sp),[other] <- Instruction changing LIR and LAR
inc d2
setlb <- SETLB instruction

SETLB can be executed without the occurence of pipeline stall since
the write of LIR and LAR has already completed when executing
SETLB.

[Applicable instructions]

<Preceding or return target instructions> MOVM (SP), reg, RET, RETF
<Subsequent instruction> SETLB

316 Recommendations on Instruction description

o

High-speed processing

Chapter3 Directions for using instructions

3-3 Assignment of the instructions preceding RETF

RETF performs a branch from the subroutine to the return target at high speed by using the contents

of MDR as return address. Therefore, the instructions changing the preceding MDR are not ex-

ecuted until the change of MDR has completed.

(1) Assignment of the instructions changing MDFin the final cycle of executing instructions and
subsequent RETF.

[Contents]

It is recommended that more than 2 cycles should be inserted between the instructions changing

MBDR in the final cycle of executing instructions and subsequent RETF in order to run the pipeline

smoothly.

MOV/EXT or
MUL/MULU final cycle

DEC

EX

MEM

[Examples]

Instruction decryption
IRegister read

3 cycle insertion

RETFinstruction
Executable

A

Operation

Instruction decryption

IMDR occurences
in succession

MDR write +

MDR write
Completion

[General description examples]

_func

_Ofunc

OR
_func

_Ofunc

OR
_func

_Ofunc

FUNCINFO
inc

mov

inc
inc
retf

FUNCINFO
inc
inc

mov

inc
retf

FUNCINFO
inc
inc
inc

mov

retf

_func,8,[]
a0
dO,mdr

al
a2

_func,8,[]
a0
al

a0,mdr

a2

_func,8,[]
a0

al

a2

dO,mdr

<- Instructions changing MDR

in the final cycle of executing instructions

<- RETF

<- Instructions changing MDR

in the final cycle of executing instructions

<- RETF

<- Instructions changing MDR
in the final cycle of executing instructions
<- RETF

317

Recommendations on Instruction description

Chapter 3 Directions for using instructions

A pipeline stall occurs and the operations of RETF is delayed until the write of MDR
in MOV has completed since the operations of RETF start before the write of MDR

has completed.

[General description examples]

_func
_funco FUNCINFO funec,8,[]
mov d0,mdr <- Instructions changing MDR in the final
cycle of executing instructions
inc a0
inc al
inc a2
retf <-RET

RETF can be executed without the occurence of pipeline stall since the write of MDR

in MOV has already completed when executing RETF.

[Applicabel instructions]
<Preceding instructions> MOV Dm, MDR, EXT, MUL, MULU
<Subsequent instructions> RETF

G For the details of the description of FUNCINFO pseudo-instruction, refer to MN103E series
= cross-assembler user's manual.

(2) Assignment of the instructions changing MDFin the final cycle of executing instructions and
subsequent RETF

m [Contents]

High-speed processing

It is recommended that more than 2 cycles should be inserted between the instructions changing
MBDR at one cycle earlier than the final cycle of the instruction execution and the subsequent
RETF.

RETF instruction
CALL/CALLS/DIV/DIVU Executable

final cycle
. . 2cycle,insertion ,
DEC ¥ X - »KY_RETF)

[nstruction decryption Instruction decryptioni
IRegister occurences § IMDR occurences
i

1 in succession n ion
EX | .< successio

Address calculation

I A

i or operation
MEM | .
i]
WB | X >
MDR write *
MDR write
Completion

318 Recommendations on Instruction description

Chapter3 Directions for using instructions

[Examples]
[General description examples]
_lab
LABEL FUNCINFO
inc
div
inc
retf
OR
_lab
LABEL FUNCINFO
inc
inc
div
retf

_func,8,[]
a0
d1,do

al

_lab,8,[]
a0

al

d1,do

<- Instructions changing MDR in one cycle earlier
than the final cycle of instruction execution

<- RET

<- Instructions changing MDR in one cycle earlier
than the final cycle of instruction execution
<- RETF

A pipeline stall occurs and the operations of RETF is delayed until the write of
MDR in DIV has completed since the operations of RETF start before the write
of MDR has completed.

[Recommended description examples]
_lab
LABEL FUNCINFO
inc
div

inc
inc
retf

_func,8,[]
a0
d1,do

a0

al

<- Instructions changing MDR in one cycle earlier

than the final cycle of instruction execution

<-RET

[Applicable instructions]

<Preceding instructions, or Branch instructions>

DIV, DIVU, CALL, CALLS

<Subsequent instructions> RETF
‘ For the details of the description of FUNCINFO pseudo-instruction, refer to MN103E series
= cross-assembler user's manual.

Recommendations on Instruction description 319

Chapter 3 Directions for using instructions

)

High-speed processing

(3) Assignment of the instructions changing MDR at 2 cycles earlier than the final cycle of

executing instructions and subsequent RETF

[Contents]
It is recommended that more than 1 cycle should be inserted between the instructions changing
MBDR at 2 cycles earlier than the final cycle of the instruction execution and the subsequent RETF.

[Examples]
[General description examples]
_lab
LABEL FUNCINFO func,8,[]
inc a0
movm (sp), [other] <- Instructions changing MDR in
one cycle earlier than the final
cycle of instruction execution
retf <-RET

A pipeline stall occurs and the operations of RETF is delayed until the
write of MDR in MOVM has completed since the operations of RETF
start before the write of MDR has completed.

[Recommended description examples]
_lab
LABEL FUNCINFO lav,8,[]
movm (sp), [other] <- Instructions changing MDR in one
cycle earlier than the final cycle of
instruction execution
inc do
retf <-RET

RETF can be executed without the occurence of pipeline stall since the
write of MDR in MOVM has already completed when executing RETF.

[Applicable instructions]
<Preceding instructions, or return target instruction> MOV (SP), reg, RET, RETF
<Subsequent instructions> RETF

For the details of the description of FUNCINFO pseudo-instruction, refer to MN103EO series
cross-assembler user's manual.

32(0 Recommendationson Instruction description

o

High-speed processing

[Examples]

Chapter3 Directions for using instructions

3-4 Assignment of the instructions of CALL/CALLS branch targets

[Contents]

CALL/CALLS store the return target address in MDR in order to speed up branching to the return
address of RETF. Therefore, the instructions refering to MDR of the branch target are not
executed until storing the return target address in MDR has completed.

It is recommended that more than 2 cycles should be inserted between CALL/CALLS and the

instructions refering to MDR at the branch target in order to run the pipeline smoothly.

It is recommended that more than 2 cycles should be inserted between the instructions changing
MBDR in the final cycle of executing instructions and subsequent RETF in order to run the pipe-

line smoothly.

MOV/DIV/DIVU instruction

MDR write

CALL/CALLS Executable
, final cycle , 2 cycle insertion b
DEC K X Dia— ! —> !
Instruction decryptioni : : i Instruction decryption :
1/Register read i IMDR occurences
EX ' < in succession
Operation ! !
MEM < :
' |
WB , , < >+\ Di

MDR write
Completion

LABEL

OR

LABEL

[General description examples]

call LABEL

inc a0

mov mdr, dO <- Instructions refering to MDR
inc al

retf <- RETF

call LABEL

mov mdr, dO <- Instructions refering to MDR
inc a0 <- Instructions refering to MDR
inc a0

retf <- RETF

A pipeline stall occurs and the operations of MOV is delayed until the write to MDR
has completed since the operations of MOV start before the write to MDR in CALL

has completed.

Recommendations on Instruction description 3 21

Chapter 3 Directions for using instructions

[Recommended description examples]
call LABEL <- CALL/CALLS
LABEL inc a0
inc al
mov mdr, dO <- Instructions refering to MDR

When executing MOV, MDR can be referred without the occurence of pipeline stall since the write to MDR
in CALL has completed.

[Applicable instructions]

<Preceding instructions> CALL, CALLS
<Subsequent instructions> MOV, MDR, Dn, DIV, DIVU

3 272 Recommendations on Instruction description

Chapter 4 Appendix

Chapter 4 APPENDIX

MN103E SERIES THROUGHPUT & LATENCY

AM33-1 AM33-2/AM33-2A NOTE
Assembly mnemonic Throughput Latency Throughput Latency
MOV Am,An 1 1 1 1

MOV Dm,Dn
MOV Am,Dn
MOV Dm,An
MOV Am,Rn
MOV Rm,An
MOV Dm,Rn
MOV Rm,Dn
MOV Rm,Rn
MOV imm8,An
MOV imm16,An
MOV imm32,An
MOV imm8,Dn
MOV imm16,Dn
MOV imm32,Dn
MOV imm8,Rn
MOV imm24,Rn
MOV imm32,Rn
MOV MDR,Dn
MOV Dm,MDR

MOV SP,An
MOV Am,SP
MOV PC,An

MOV (Am),Dn
MOV (Am),An
MOV (Rm),Rn
MOV (d8,Am),Dn
MOV (d16,Am),Dn
MOV (d32,Am),Dn
MOV (d8,Am),An
MOV (d16,Am),An
MOV (d32,Am),An
MOV (d8,Rm),Rn
MOV (d24,Rm),Rn
MOV (d32,Rm),Rn
MOV (Di,Am),Dn
MOV (Di,Am),An
MOV (Ri,Rm),Rn
MOV (abs16),Dn
MOV (abs32),Dn
MOV (abs16),An
MOV (abs32),An
MOV (abs8),Rn
MOV (abs24),Rn
MOV (abs32),Rn

NN =2 N 2N 2 a2 a aNDNDNDND AN 22 ailN 2 a2 aAa aaa a aaaa a aiNDDND AN 2 AN A A A A A aaa a aaa
A A OO PO P OWLWWWPEDPDPDODDOWWPEDOOOLWWWA A A A A DNDN-_2N-_2A 2N 2

N N =2 N 2N 2 a a a2 NDD AN O a N A o a2 aaaa aaaNDDND DA D2 AaAOa N A D
A A WO P OPAPOWOWLWWWPRERD2OPPDOWDEAOLOWWWWA A A A AQAODNDN-_22DN-_22 AN 2 A

324 MNI103E SERIES THROUGHPUT & LATENCY

MN103E SERIES THROUGHPUT & LATENCY

Chapter 4 APPENDIX

AM33-1 AM33-2/AM33-2A NOTE

Assembly mnemonic Throughput Latency | Throughput Latency
MOV (d8,SP),Dn 1 3 1 3
MOV (d16,SP),Dn 1 3 1 3
MOV (d32,SP),Dn 2 4 2 4
MOV (d8,SP),An 1 3 1 3
MOV (d16,SP),An 1 3 1 3
MOV (d32,SP),An 2 4 2 4
MOV (SP),Rn 1 3 1 3
MOV (d8,SP),Rn 1 3 1 3
MOV (d24,SP),Rn 2 4 2 4
MOV (d32,SP),Rn 2 4 2 4
MOV (d8,Am),SP 1 3 1 3
MOV Dm,(An) 1 - 1 -
MOV Am,(An) 1 - 1 -
MOV Rm,(Rn) 1 - 1 -
MOV Dm,(d8,An) 1 - 1 -
MOV Dm,(d16,An) 1 - 1 -
MOV Dm,(d32,An) 2 - 2 -
MOV Am,(d8,An) 1 - 1 -
MOV Am,(d16,An) 1 - 1 -
MOV Am,(d32,An) 2 - 2 -
MOV Rm,(d8,Rn) 1 - 1 -
MOV Rm,(d24,Rn) 2 - 2 -
MOV Rm,(d32,Rn) 2 - 2 -
MOV Dm,(Di,An) 1 - 1 -
MOV Am,(Di,An) 1 - 1 -
MOV Rm,(Ri,Rn) 1 - 1 -
MOV Dm,(abs16) 1 - 1 -
MOV Dm,(abs32) 2 - 2 -
MOV Am,(abs16) 1 - 1 -
MOV Am,(abs32) 2 - 2 -
MOV Rm,(abs8) 1 - 1 -
MOV Rm,(abs24) 2 - 2 -
MOV Rm,(abs32) 2 - 2 -
MOV Dm,(d8,SP) 1 - 1 -
MOV Dm,(d16,SP) 1 - 1 -
MOV Dm,(d32,SP) 2 - 2 -
MOV Am,(d8,SP) 1 - 1 -
MOV Am,(d16,SP) 1 - 1 -
MOV Am,(d32,SP) 2 - 2 -
MOV Rm,(SP) 1 - 1 -
MOV Rm,(d8,SP) 1 - 1 -
MOV Rm,(d24,SP) 2 - 2 -
MOV Rm,(d32,SP) 2 - 2 -
MOV SP,(d8,An) 1 - 1 -
MOV (Rm+,imm8),Rn 1 3 1 3 Rm is valid at Latency of 1.

MN103E SERIES THROUGHPUT & LATENCY 325

Chapter 4 APPENDIX

MN103E SERIES THROUGHPUT & LATENCY

Assembly mnemonic

AM33-1

Throughput

Latency

AM33-2/AM33-2A
Throughput Latency

NOTE

MOV
MoV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOVU
MOVU
MOVU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU

(Rm+,imm24),Rn
(Rm+,imm32),Rn
(Rm+),Rn
Rm,(Rn+,imm8)
Rm,(Rn+,imm24)
Rm,(Rn+,imm32)
Rm,(Rn+)
MSP,An
Am,MSP
SSP,An
Am,SSP
USP,An
Dm,EPSW
EPSW,Dn
Dm,PSW
PSW,Dn
imm8,Rn
imm24,Rn
imm32,Rn
(Am),Dn
(Rm),Rn
(d8,Am),Dn
(d16,Am),Dn
(d32,Am),Dn
(d8,Rm),Rn
(d24,Rm),Rn
(d32,Rm),Rn
(Di,Am),Dn
(Ri,Rm),Rn
(abs16),Dn
(abs32),Dn
(abs8),Rn
(abs24),Rn
(abs32),Rn
(d8,SP),Dn
(d16,SP),Dn
(d32,SP),Dn
(SP),Rn
(d8,SP),Rn
(d24,SP),Rn
(d32,SP),Rn
Dm,(An)
Rm,(Rn)
Dm,(d8,An)
Dm,(d16,An)

2

(L V- VN \No TR | IR U N |\, [G W\, T N IS U |\ [N U U U O T 'S IS Uiy |, I U N e N 1S B | [N (i S L U U U UL UL U G O O T | I U U S)

4

A A O WO PR OO POPPDOLOWLWOWDPEA P OPRDROWWWODNDND-_LA A A A A OO A aa aNDND-2 W s

2 4

A A OO PR OO PO PDOLWLWOWPEADPEPOPRRWOWWWODNNDN_LA A A QO A OO A aa aNDND-2 W s

S A A A NN A L, N A NDDND AN D A aNDNDN AN D aaa DN N D ma aa aa a DN

Rm is valid at Latency of 2.
Rm is valid at Latency of 2.

Rm is valid at Latency of 1.

326 MNI103E SERIES THROUGHPUT & LATENCY

MN103E SERIES THROUGHPUT & LATENCY

Chapter 4 APPENDIX

Assembly mnemonic

AM33-1
Throughput

Latency

AM33-2/AM33-2A

Throughput Latency

NOTE

MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVHU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU
MOVBU

Dm,(d32,An)
Rm,(d8,Rn)
Rm,(d24,Rn)
Rm,(d32,Rn)
Dm,(Di,An)
Rm,(Ri,Rn)
Dm,(abs16)
Dm,(abs32)
Rm,(abs8)
Rm,(abs24)
Rm,(abs32)
Dm,(d8,SP)
Dm,(d16,SP)
Dm,(d32,SP)
Rm,(SP)
Rm,(d8,SP)
Rm,(d24,SP)
Rm,(d32,SP)

(Rm+,imm8),Rn
(Rm+,imm24),Rn
(Rm+,imm32),Rn

(Rm+),Rn

Rm,(Rn+,imm8)
Rm,(Rn+,imm24)
Rm,(Rn+,imm32)

Rm,(Rn+)
(Am),Dn
(Rm),Rn
(d8,Am),Dn
(d16,Am),Dn
(d32,Am),Dn
(d8,Rm),Rn
(d24,Rm),Rn
(d32,Rm),Rn
(Di,Am),Dn
(Ri,Rm),Rn
(abs16),Dn
(abs32),Dn
(abs8),Rn
(abs24),Rn
(abs32),Rn
(d8,SP),Dn
(d16,SP),Dn
(d32,SP),Dn
(SP),Rn

N

AN 2 A NN AN 2 A A NN -ADN- O @AaaNDN=a" A DNNN A PNN-A AN AN N AN AaNndnDN -

WA OWOWDAE PP, OPRADOOOODEDOODPRDOOOOA2DNDNA2OPADM®

N

AN = A NN AN A A NN -AaADN- 2O @AaaNRNN-aS A DNNN A PNN-A AN ANN AN A AaNnndpN -

WA WWDA DWW LWWDRERDEDOODPRPDOOOLLWO-_2DNODNN-2OPDPdD®

Rm is valid at Latency of 1.
Rm is valid at Latency of 2.

Rm is valid at Latency of 2.
Rm is valid at Latency of 1.

MN103E SERIES THROUGHPUT & LATENCY 327

Chapter 4 APPENDIX

MN103E SERIES THROUGHPUT & LATENCY

Assembly mnemonic

AM33-2/AM33-2A
Throughput Latency

NOTE

MOVBU (d8,SP),Rn
MOVBU (d24,SP),Rn
MOVBU (d32,SP),Rn
MOVBU Dm,(An)
MOVBU Rm,(Rn)
MOVBU Dm,(d8,An)
MOVBU Dm,(d16,An)
MOVBU Dm,(d32,An)
MOVBU Rm,(d8,Rn)
MOVBU Rm,(d24,Rn)
MOVBU Rm,(d32,Rn)
MOVBU Dm,(Di,An)
MOVBU Rm,(Ri,Rn)
MOVBU Dm,(abs16)
MOVBU Dm,(abs32)
MOVBU Rm,(abs8)
MOVBU Rm,(abs24)
MOVBU Rm,(abs32)
MOVBU Dm,(d8,SP)
MOVBU Dm,(d16,SP)
MOVBU Dm,(d32,SP)
MOVBU Rm,(SP)
MOVBU Rm,(d8,SP)
MOVBU Rm,(d24,SP)
MOVBU Rm,(d32,SP)
MOVM (SP),regs
MOVM (USP),regs
MOVM regs,(SP)
MOVM regs,(USP)

EXT Dn
EXT Rn
EXTH Dn
EXTH Rn
EXTH Rm,Rn
EXTHU Dn
EXTHU Rn
EXTHU Rm,Rn
EXTB Dn
EXTB Rn
EXTB Rm,Rn
EXTBU Dn
EXTBU Rn
EXTBU Rm,Rn
CLR Dn
CLR Rn

AM33-1
Throughput Latency

1 3

2 4

2 4

1 -

1 -

1 -

1 -

2 -

1 -

2 -

2 -

1 -

1 -

1 -

2 -

1 -

2 -

2 -

1 -

1 -

2 -

1 -

1 -

2 -

2 -
2+REGs 2+REGs
2+REGs 2+REGs
2+REGs 2+REGs
2+REGs 2+REGs

JEE G (U G UK U U G GO (U (K U U U G I U
JEE G (U G UK U G UL (U K U U U G I U

1 3

2 4

2 4

1 -

1 -

1 -

1 -

2 -

1 -

2 -

2 -

1 -

1 -

1 -

2 -

1 -

2 -

2 -

1 -

1 -

2 -

1 -

1 -

2 -

2 -
2+REGs 2+REGs
2+REGs 2+REGs
2+REGs 2+REGs
2+REGs 2+REGs

JENE G (UL U UK U U G (UL (U UK U U U G I U
RN (UL U UK I GO G U UL U (UK U U U G I U

REGs=Numberofregister

328 MNI103E SERIES THROUGHPUT & LATENCY

MN103E SERIES THROUGHPUT & LATENCY

Chapter 4 APPENDIX

Assembly mnemonic

AM33-1

Throughput

Latency

AM33-2/AM33-2A

Throughput Latency

NOTE

DCPF
DCPF
DCPF
DCPF
DCPF
DCPF
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
SuB
SuB
SuB
SuB
SuB
SuB
SuB
SuUB
SuB
SuB
SUB
SUBC
SUBC
SUBC
SUBC

(Rm)
(d8,Rm)
(d24,Rm)
(d32,Rm)
(Ri,Rm)
(SP)
Dm,Dn
Dm,An
Am,Dn
Am,An
Rm,Rn,Rd
Rm,Rn
imm8,Dn
imm16,Dn
imm32,Dn
imm8,An
imm16,An
imm32,An
imm8,Rn
imm24,Rn
imm32,Rn
imm8,SP
imm16,SP
imm32,SP
Dm,Dn
Rm,Rn
Rm,Rn,Rd
imm8,Rn
imm24,Rn
imm32,Rn
Dm,Dn
Dm,An
Am,Dn
Am,An
Rm,Rn
Rm,Rn,Rd
imm8,Rn
imm24,Rn
imm32,Rn
imm32,Dn
imm32,An
Dm,Dn
Rm,Rn
Rm,Rn,Rd
imm8,Rn

=S A A A NN N NN /A A A A e aa aA NN A A A DD NN D NN DO NN

S A A A NN N NN /A A A A A a A NDDN A A A AN, NN D NN DO DN

—_

S A A A N N NN A A A A A A A NN A A A a2 A NN AN DA AN D D = a DN -~

S A A A N N NN /A A A A A aa A NN DA A A A 2D A NDNDNN DO DD O NN N

MN103E SERIES THROUGHPUT & LATENCY 329

Chapter 4 APPENDIX

MN103E SERIES THROUGHPUT & LATENCY

AM33-1 AM33-2/AM33-2A NOTE
Assembly mnemonic Throughput Latency Throughput Latency
SUBC imm24,Rn 2 2 2 2
SUBC imm32,Rn 2 2 2 2
MUL Dm,Dn 2 3 2 3
MUL Rm,Rn 2 3 2 3
MUL Rm,Rn,Rd1,Rd2 2 3 2 3
MUL imm8,Rn 2 3 2 3
MUL imm24,Rn 3 4 3 4
MUL imm32,Rn 3 4 3 4
MULU Dm,Dn 2 3 2 3
MULU Rm,Rn 2 3 2 3
MULU Rm,Rn,Rd1,Rd2 2 3 2 3
MULU imm8,Rn 2 3 2 3
MULU imm24,Rn 3 4 3 4
MULU imm32,Rn 3 4 3 4
DIV Dm,Dn
{MDR,Dn}=0 4 5 4 5
Value{MDR Dn}canspecifyby1-byte. 14 14 14 14
Value{MDR Dn}canspecifyby2-byte. 22 23 22 23
Value{MDR Dn}canspecifyby3-byte. 30 31 30 31
Value{MDR Dn}canspecifyby4-byteormore. 38 39 38 39
DIV Rm,Rn
{MDR,Dn}=0 4 5 4 5
Value{MDR Dn}canspecifyby1-byte. 14 14 14 14
Value{MDR Dn}canspecifyby2-byte. 22 23 22 23
Value{MDR Dn}canspecifyby3-byte. 30 31 30 31
Value{MDR Dn}canspecifyby4-byteormore. 38 39 38 39
DIVU Dm,Dn
{MDR Dn}=0 4 5 4 5
Value{MDR Dn}canspecifyby1-byte. 14 14 14 14
Value{MDR Dn}canspecifyby2-byte. 22 23 22 23
Value{MDR Dn}canspecifyby3-byte. 30 31 30 31
Value{MDR Dn}canspecifyby4-byteormore. 38 39 38 39
DIVU Rm,Rn
{MDR Dn}=0 4 5 4 5
Value{MDR Dn}canspecifyby1-byte. 14 14 14 14
Value{MDR Dn}canspecifyby2-byte. 22 23 22 23
Value{MDR Dn}canspecifyby3-byte. 30 31 30 31
Value {MDR,Dn} can specify by 4-byte or morg. 38 39 38 39
INC An 1 1 1 1
INC Dn 1 1 1 1

330 MNI103E SERIES THROUGHPUT & LATENCY

MN103E SERIES THROUGHPUT & LATENCY

Chapter 4 APPENDIX

Assembly mnemonic

AM33-1
Throughput

Latency

AM33-2/AM33-2A

Throughput Latency

NOTE

INC

INC4
INC4
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

XOR
XOR
XOR
XOR
XOR
XOR

Rn

An

Rn

Dm,Dn
Dm,An
Am,Dn
Am,An
Rm,Rn
imm8,Dn
imm16,Dn
imm32,Dn
imm8,An
imm16,An
imm32,An
imm8,Rn
imm24,Rn
imm32,Rn
Dm,Dn
Rm,Rn
Rm,Rn,Rd
imm8,Dn
imm16,Dn
imm32,Dn
imm8,Rn
imm24,Rn
imm32,Rn
imm16,PSW
imm32,EPSW
Dm,Dn
Rm,Rn
Rm,Rn,Rd
imm8,Dn
imm16,Dn
imm32,Dn
imm8,Rn
imm24,Rn
imm32,Rn
imm16,PSW
imm32,EPSW
Dm,Dn
Rm,Rn
Rm,Rn,Rd
imm16,Dn
imm32,Dn
imm8,Rn

—_

PR N |\ JNIE UL (I U U (O I N (S TR G JE Uy |, RS G N UL U G NG I N (G TR G RO U | N (L L UL U U L T (O R U | S N U S JEE UL (UL U UL (UL U L UL U §

[EE N O [U U U O L N LS R (S R N N [U U U U G L I N LS T O [U S R N N e N W (N0 T (O IR N N [U U 1O S S N U U (S U U U G-

—_

PN |\ [N UL (I U U (O I N (G TR ('S I Ny |, TR U U U Ut G (S I N (NG T 0 I N | [Ui A A (L U L T (G TR U |\ JRE Gt U |\ JJNNPUE U (S (U (UL U L UL U §
EEUE I GO O O O IS T G G N, R G G Gt G G G TG G T | JRSE G\, T G G G G G O T 1S TN N, R G Uy |\, JOE Gt i (L G QO G G O G

MN103E SERIES THROUGHPUT & LATENCY 331

Chapter 4 APPENDIX

MN103E SERIES THROUGHPUT & LATENCY

AM33-1 AM33-2/AM33-2A NOTE
Assembly mnemonic Throughput Latency Throughput Latency
XOR imm24,Rn 2 2 2 2
XOR imm32,Rn 2 2 2 2
NOT Dn 1 1 1 1
NOT Rn 1 1 1 1
BTST imm8,Dn 1 1 1 1
BTST imm16,Dn 1 1 1 1
BTST imm32,Dn 2 2 2 2
BTST imm8,Rn 1 1 1 1
BTST imm24,Rn 2 2 2 2
BTST imm32,Rn 2 2 2 2
BTST imm8,(d8,An) 4 4 4 4
BTST imma8,(abs16) - - 4 4
BTST imm8,(abs32) 5 5 5 5
BSET Dm,(An) 6 6 6 6
BSET imm8,(d8,An) 6 6 6 6
BSET imm8,(abs16) - - 6 6
BSET imm8,(abs32) 7 7 7 7
BCLR Dm,(An) 6 6 6 6
BCLR imm8,(d8,An) 6 6 6 6
BCLR imm8,(abs16) - - 6 6
BCLR imm8,(abs32) 7 7 7 7
ASR Dm,Dn 1 1 1 1
ASR Rm,Rn 1 1 1 1
ASR Rm,Rn,Rd 1 1 1 1
ASR imm8,Dn 1 1 1 1
ASR imm8,Rn 1 1 1 1
ASR imm24,Rn 2 2 2 2
ASR imm32,Rn 2 2 2 2
LSR Dm,Dn 1 1 1 1
LSR Rm,Rn 1 1 1 1
LSR Rm,Rn,Rd 1 1 1 1
LSR imm8,Dn 1 1 1 1
LSR imm8,Rn 1 1 1 1
LSR imm24,Rn 2 2 2 2
LSR imm32,Rn 2 2 2 2
ASL Dm,Dn 1 1 1 1
ASL Rm,Rn 1 1 1 1
ASL Rm,Rn,Rd 1 1 1 1
ASL imm8,Dn 1 1 1 1
ASL imm8,Rn 1 1 1 1
ASL imm24,Rn 2 2 2 2
ASL imm32,Rn 2 2 2 2
ASL2 Dn 1 1 1 1
ASL2 Rn 1 1 1 1
ROR Dn 1 1 1 1

332 MNI103E SERIES THROUGHPUT & LATENCY

MN103E SERIES THROUGHPUT & LATENCY

Chapter 4 APPENDIX

Assembly mnemonic

AM33-1
Throughput

Latency

AM33-2/AM33-2A
Throughput Latency

NOTE

ROR
ROL
ROL
BEQ
BNE
BGT
BGE
BLE
BLT
BHI
BCC
BLS
BCS
BVC
BVS
BNC
BNS
BRA
LEQ
LNE
LGT
LGE
LLE
LLT
LHI
LCC
LLS
LCS
LRA
SETLB
JMP
JMP
JMP
CALL
CALL
CALLS
CALLS
CALLS
RET
RETF
RETS
RTI
TRAP
NOP

Rn

Dn

Rn

(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)
(d8,PC)

(An)

(d16,PC)
(d32,PC)
(d16,PC),regs,imm8
(d32,PC),regs,imm8
(An)

(d16,PC)
(d32,PC)
regs,imm8
regs,imm8

SYSCALL imm4

1

A W W a4 a4 s s a o a WD DDN DWW WW W W W W W

2+REGs
3+REGs
3
4
4
5+REGs
2+REGs
6

7
3
1

1
1
1

1 1
1
1

W W = = 2 a2 A A @A A A A A AW DR DR OWOLWLOWLWLWLWWW S
[

N
1

2+REGs -
3+REGs -
3 -
4 -
4 -
5+REGs -
2+REGs -
6 -

o w N
1

Throughput is 1 if branch
is not taken.

Throughput is 2 if branch
is not taken.

[Throughput is 2 if branch is
not taken.

] REGs=Numberofregister

] REGs=Numberofregister

MN103E SERIES THROUGHPUT & LATENCY 333

Chapter 4 APPENDIX

MN103E SERIES THROUGHPUT & LATENCY

Assembly mnemonic

AM33-1
Throughput

Latency

AM33-2/AM33-2A
Throughput Latency

NOTE

PI

DMULH Rm,Rn

DMULH Rm,Rn,Rd1,Rd2
DMULH imm32,Rn
DMULHU Rm,Rn
DMULHU Rm,Rn,Rd1,Rd2
DMULHU imm32,Rn
DMACH Rm,Rn

DMACH Rm,Rn,Rd
DMACH imm32,Rn
DMACHU Rm,Rn
DMACHU Rm,Rn,Rd
DMACHU imm32,Rn

MAC Rm,Rn

MAC Rm,Rn,Rd1,Rd2
MAC imm8,Rn

MAC imm24,Rn

MAC imm32,Rn
MACU Rm,Rn

MACU Rm,Rn,Rd1,Rd2
MACU imm8,Rn

MACU imm24,Rn
MACU imm32,Rn
MACH Rm,Rn

MACH Rm,Rn,Rd1,Rd2
MACH imm8,Rn

MACH imm24,Rn
MACH imm32,Rn
MACHU Rm,Rn

MACHU Rm,Rn,Rd1,Rd2
MACHU imm8,Rn
MACHU imm24,Rn
MACHU imm32,Rn
MACB Rm,Rn

MACB Rm,Rn,Rd
MACB imm8,Rn

MACB imm24,Rn
MACB imm32,Rn
MACBU Rm,Rn

MACBU Rm,Rn,Rd
MACBU imm8,Rn
MACBU imm24,Rn
MACBU imm32,Rn
SWHW Rm,Rn

SWAP Rm,Rn

*

= 2 W W NNNWWNDNDDNWOWNDNDDNDWWNDNDNOOWDNDNDNDNOOWDNDNDDNDNDDND=_22 2N 22N 2N

*

= a2 BB W WWDA DWW LWDEDDOOOWDEDDOOOLOODEDPDOOLOLOPEDPDRDOWLOLOWDNDNDWDNDNDWDNDNDWDNDNDN

* *

= a2 AR WWWDADPRA,OWOWODREDRDOOOODEDDOOOOPEDDOOWODEDRE OO WODNDNODNDNMODNMNDNNMODNDN

= 2 W W NNDN W WNDNDNWWDNDNDDNDWWOWNDNDDNWWOWNDNNNOWWOWNDNDNNMNNADDE 2N~ 2N 22N -

334 MNI103E SERIES THROUGHPUT & LATENCY

MN103E SERIES THROUGHPUT & LATENCY

Chapter 4 APPENDIX

Assembly mnemonic

AM33-1
Throughput

Latency

AM33-2/AM33-2A
Throughput Latency

NOTE

SWAPH
SAT16
SAT24
MCSTE
MCSTE
BSCH
BSCH
ADD_ADD
ADD_SUB
ADD_CMP
ADD_MOV
ADD_ASR

Rm,Rn
Rm,Rn
Rm,Rn
Rm,Rn
imm8,Rn
Rm,Rn
Rm,Rn,Rd

Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2

ADD_LSRRm1,Rn1,imm4,Rn2
ADD_ASLRm1,Rn1,Rm2,Rn2

ADD_ADD
ADD_SUB
ADD_CMP
ADD_MOV
ADD_ASR

Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2

ADD_LSRRm1,Rn1,Rm2,Rn2
ADD_ASLRm1,Rn1,imm4,Rn2

ADD_ADD
ADD_SUB
ADD_CMP
ADD_MOV
ADD_ASR

imm4,Rn1,Rm2,Rn2
imm4,Rn1,Rm2,Rn2
imm4,Rn1,Rm2,Rn2
imm4,Rn1,Rm2,Rn2
imm4,Rn1,Rm2,Rn2

ADD_LSRimm4,Rn1,Rm2,Rn2
ADD_ASLimm4,Rn1,Rm2,Rn2

ADD_ADD
ADD_SUB
ADD_CMP
ADD_MOV
ADD_ASR

imm4,Rn1,imm4,Rn2
imm4,Rn1,imm4,Rn2
imm4,Rn1,imm4,Rn2
imm4,Rn1,imm4,Rn2
imm4,Rn1,imm4,Rn2

ADD_LSRimm4,Rn1,imm4,Rn2
ADD_ASLimm4,Rn1,imm4,Rn2

CMP_ADD
CMP_SUB
CMP_MOV
CMP_ASR
CMP_LSR

Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2

CMP_ASLRm1,Rn1,Rm2,Rn2

CMP_ADD
CMP_SUB
CMP_MOV
CMP_ASR

Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2

e G\ U U U G QU U O U U GO QU (U U P GO G U (U (U QU QU QU (U (U U QU QU QU O O U G QU (U O U U G G U

1

N\ (UL G U (U U U UK GO G U O U U U U O O G U U O O A U G UL U U U U U GO U O U U U UL (U U U U UL (UL G §

1 1

R\ (S PUIE G I (UK U U UK UK UK (U K UK G U (U (UL UK UK UK U U O U UK G UL U UK U U U G U K S I U (UL (UK (U U U U UL (UL U §
- a2 a2 a2 a4 a2 a4 A A S A A . aa aA a a a A A aA a A a A A A A

MN103E SERIES THROUGHPUT & LATENCY 335

Chapter 4 APPENDIX

MN103E SERIES THROUGHPUT & LATENCY

AM33-1 AM33-2/AM33-2A NOTE
Assembly mnemonic Throughput Latency Throughput Latency

CMP_LSR Rm1,Rn1,imm4,Rn2 1
CMP_ASLRm1,Rn1,imm4,Rn2
CMP_ADD imm4,Rn1,Rm2,Rn2
CMP_SUB imm4,Rn1,Rm2,Rn2
CMP_MOV imm4,Rn1,Rm2,Rn2
CMP_ASR imm4,Rn1,Rm2,Rn2
CMP_LSR imm4,Rn1,Rm2,Rn2
CMP_ASLimm4,Rn1,Rm2,Rn2
CMP_ADD imm4,Rn1,imm4,Rn2
CMP_SUB imm4,Rn1,imm4,Rn2
CMP_MOV imm4,Rn1,imm4,Rn2
CMP_ASR imm4,Rn1,imm4,Rn2
CMP_LSR imm4,Rn1,imm4,Rn2
CMP_ASLimm4,Rn1,imm4,Rn2
SUB_ADD Rm1,Rn1,Rm2,Rn2
SUB_SUBRm1,Rn1,Rm2,Rn2
SUB_CMP Rm1,Rn1,Rm2,Rn2
SUB_MOV Rm1,Rn1,Rm2,Rn2
SUB_ASRRm1,Rn1,Rm2,Rn2
SUB_LSRRm1,Rn1,Rm2,Rn2
SUB_ASL Rm1,Rn1,Rm2,Rn2
SUB_ADD Rm1,Rn1,imm4,Rn2
SUB_SUBRm1,Rn1,imm4,Rn2
SUB_CMP Rm1,Rn1,imm4,Rn2
SUB_MOV Rm1,Rn1,imm4,Rn2
SUB_ASRRm1,Rn1,imm4,Rn2
SUB_LSRRm1,Rn1,imm4,Rn2
SUB_ASL Rm1,Rn1,imm4,Rn2
SUB_ADD imm4,Rn1,Rm2,Rn2
SUB_SUBimm4,Rn1,Rm2,Rn2
SUB_CMP imm4,Rn1,Rm2,Rn2
SUB_MOV imm4,Rn1,Rm2,Rn2
SUB_ASRimm4,Rn1,Rm2,Rn2
SUB_LSRimm4,Rn1,Rm2,Rn2
SUB_ASL imm4,Rn1,Rm2,Rn2
SUB_ADD imm4,Rn1,imm4,Rn2
SUB_SUBimm4,Rn1,imm4,Rn2
SUB_CMP imm4,Rn1,imm4,Rn2
SUB_MOV imm4,Rn1,imm4,Rn2
SUB_ASRimm4,Rn1,imm4,Rn2
SUB_LSRimm4,Rn1,imm4,Rn2
SUB_ASL imm4,Rn1,imm4,Rn2
MOV_ADD Rm1,Rn1,Rm2,Rn2
MOV_SUB Rm1,Rn1,Rm2,Rn2
MOV_CMP Rm1,Rn1,Rm2,Rn2

- A A A A A A A A A - A A - A - A A A A A A A A A A A A A A - A A A A A - A A A A
UK\ UUIE Gl (UK U U U G UL QU UK O U U U U U UK U U O U U U UK U U U U U U U O U U U U U U U U GO U UK U §
JENC I (UL Ul I UK U UK UK UL (UK UK U UK U U UL U UK G U (U U UK UK U UK U UK K U U (U U U I U UL (U (U K UK UL UL L U §
R\ (S PUIE UL (UK U K UK G UL G U S UK U (U UL UK UK UK G (U U U UK GO UL U (UK U U UK GO UK O K U U UL (UK (U U U UL (UL U §

336 MNI103E SERIES THROUGHPUT & LATENCY

MN103E SERIES THROUGHPUT & LATENCY

Chapter 4 APPENDIX

Assembly mnemonic

AM33-1
Throughput

Latency

AM33-2/AM33-2A

Throughput Latency

NOTE

MOV_MOV
MOV_ASR
MOV_LSR
MOV_ASL
MOV_ADD
MOV_SUB
MOV_CMP
MOV_MOV
MOV_ASR
MOV_LSR
MOV_ASL
MOV_ADD
MOV_SUB
MOV_CMP
MOV_MOV
MOV_ASR
MOV_LSR
MOV_ASL
MOV_ADD
MOV_SUB
MOV_CMP
MOV_MOV
MOV_ASR
MOV_LSR
MOV_ASL
AND_ADD
AND_SUB
AND_CMP
AND_MOV
AND_ASR

Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
imm4,Rn1,Rm2,Rn2
imm4,Rn1,Rm2,Rn2
imm4,Rn1,Rm2,Rn2
imm4,Rn1,Rm2,Rn2
imm4,Rn1,Rm2,Rn2
imm4,Rn1,Rm2,Rn2
imm4,Rn1,Rm2,Rn2
imm4,Rn1,imm4,Rn2
imm4,Rn1,imm4,Rn2
imm4,Rn1,imm4,Rn2
imm4,Rn1,imm4,Rn2
imm4,Rn1,imm4,Rn2
imm4,Rn1,imm4,Rn2
imm4,Rn1,imm4,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2
Rm1,Rn1,Rm2,Rn2

AND_LSRRm1,Rn1,Rm2,Rn2
AND_ASLRm1,Rn1,Rm2,Rn2

AND_ADD
AND_SUB
AND_CMP
AND_MOV
AND_ASR

Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2
Rm1,Rn1,imm4,Rn2

AND_LSRRm1,Rn1,imm4,Rn2
AND_ASLRm1,Rn1,imm4,Rn2
OR_ADD Rm1,Rn1,Rm2,Rn2
OR_SUB Rm1,Rn1,Rm2,Rn2
OR_CMP Rm1,Rn1,Rm2,Rn2
OR_MOV Rm1,Rn1,Rm2,Rn2
OR_ASR Rm1,Rn1,Rm2,Rn2
OR_LSR Rm1.Rn1,Rm2.Rn2

U G U U U G U QUL G U U U QU QU (L O U UL QU G O U U QUL QUL QU (U U QU GO QU O O U QU G (U (O P G GO U U U 4

I (UL (I (UK S UK G UL G PRI (U UK U U U U U O UK U U U O U U U UK O UK (U GO G U (U O U U (U GO U U U U UL U UK U §

G (UL UL (UK S UK UK UL (UK K U U G U U U UK U U U U UK UK UL UK U UK UK G U U (U I U I (U (UL (U K UK U (UL UK UL U §
G U U U U U G U G UL GO O U U QU GO UL O U U QU G O PO U QU G QU (U U G PO GO (U O U U QU G (U (U P U (UL U U U

MN103E SERIES THROUGHPUT & LATENCY 337

Chapter 4 APPENDIX

MN103E SERIES THROUGHPUT & LATENCY

AM33-1 AM33-2/AM33-2A NOTE
Assembly mnemonic Throughput Latency Throughput Latency

OR_ASL Rm1,Rn1,Rm2,Rn2
OR_ADD Rm1,Rn1,imm4,Rn2
OR_SUB Rm1,Rn1,imm4,Rn2
OR_MOV Rm1,Rn1,imm4,Rn2
OR_CMP Rm1,Rn1,imm4,Rn2
OR_ASR Rm1,Rn1,imm4,Rn2
OR_LSR Rm1,Rn1,imm4,Rn2
OR_ASL Rm1,Rn1,imm4,Rn2
XOR_ADD Rm1,Rn1,Rm2,Rn2
XOR_SUB Rm1,Rn1,Rm2,Rn2
XOR_MOV Rm1,Rn1,Rm2,Rn2
XOR_CMP Rm1,Rn1,Rm2,Rn2
XOR_ASR Rm1,Rn1,Rm2,Rn2
XOR_LSR Rm1,Rn1,Rm2,Rn2
XOR_ASL Rm1,Rn1,Rm2,Rn2
XOR_ADD Rm1,Rn1,imm4,Rn2
XOR_SUB Rm1,Rn1,imm4,Rn2
XOR_CMP Rm1,Rn1,imm4,Rn2
XOR_MOV Rm1,Rn1,imm4,Rn2
XOR_ASR Rm1,Rn1,imm4,Rn2
XOR_LSR Rm1,Rn1,imm4,Rn2
XOR_ASL Rm1,Rn1,imm4,Rn2
DMACH_ADDRm1,Rn1,Rm2,Rn2
DMACH_SUBRm1,Rn1,Rm2,Rn2
DMACH_CMPRm1,Rn1,Rm2,Rn2
DMACH_MOVRm1,Rn1,Rm2,Rn2
DMACH_ASRRm1,Rn1,Rm2,Rn2
DMACH_LSR Rm1,Rn1,Rm2,Rn2
DMACH_ASL Rm1,Rn1,Rm2,Rn2
DMACH_ADDRm1,Rn1,imm4,Rn2
DMACH_SUBRm1,Rn1,imm4,Rn2
DMACH_CMPRm1,Rn1,imm4,Rn2
DMACH_MOWRm1,Rn1,imm4,Rn2
DMACH_ASRRm1,Rn1,imm4,Rn2
DMACH_LSRRm1,Rn1,imm4,Rn2
DMACH_ASL Rm1,Rn1,imm4,Rn2
SWHW_ADD Rm1,Rn1,Rm2,Rn2
SWHW_SUB Rm1,Rn1,Rm2,Rn2
SWHW_CMP Rm1,Rn1,Rm2,Rn2
SWHW_MOV Rm1,Rn1,Rm2,Rn2
SWHW_ASR Rm1,Rn1,Rm2,Rn2
SWHW_LSR Rm1,Rn1,Rm2,Rn2
SWHW_ASL Rm1,Rn1,Rm2,Rn2
SWHW_ADD Rm1,Rn1,imm4,Rn2
SWHW_SUBRm1,Rn1,imm4,Rn2

Rm is valid at Latency of 2.

A = A A A A A A A = A oA A A A A A A A
A = A = A A A A A o A = A oA A A A A A A A o

A A 4 A A A A A A NN NN NNMPNMNNMMNOMMNNMNMOMMNOMMNNMNMNMMN A 2 4 & a4 4 4 & a4 v v 4 v v v a4 -
A A A A A A A A A NN DN DD NN DN DNNDNNDNDNONDNDNONDNDPNODDNODDNODDN A A A A A A A A A A A A A

338 MNI103E SERIES THROUGHPUT & LATENCY

MN103E SERIES THROUGHPUT & LATENCY

Chapter 4 APPENDIX

AM33-1 AM33-2/AM33-2A NOTE
Assembly mnemonic Throughput Latency | Throughput Latency
SWHW_CMPRm1,Rn1,imm4,Rn2 1 1 1

SWHW_MOV Rm1,Rn1,imm4,Rn2
SWHW_ASR Rm1,Rn1,imm4,Rn2
SWHW_LSR Rm1,Rn1,imm4,Rn2
SWHW_ASL Rm1,Rn1,imm4,Rn2
SAT16_ADD Rm1,Rn1,Rm2,Rn2
SAT16_SUB Rm1,Rn1,Rm2,Rn2
SAT16_CMP Rm1,Rn1,Rm2,Rn2
SAT16_MOV Rm1,Rn1,Rm2,Rn2
SAT16_ASR Rm1,Rn1,Rm2,Rn2
SAT16_LSR Rm1,Rn1,Rm2,Rn2
SAT16_ASL Rm1,Rn1,Rm2,Rn2
SAT16_ADD Rm1,Rn1,imm4,Rn2
SAT16_SUB Rm1,Rn1,imm4,Rn2
SAT16_CMP Rm1,Rn1,imm4,Rn2
SAT16_MOV Rm1,Rn1,imm4,Rn2
SAT16_ASR Rm1,Rn1,imm4,Rn2
SAT16_LSR Rm1,Rn1,imm4,Rn2
SAT16_ASL Rm1,Rn1,imm4,Rn2

MOV_LEQ (Rm+,imm4),Rn
MOV_LNE (Rm+,imm4),Rn
MOV_LGT (Rm+,imm4),Rn
MOV_LGE (Rm+,imm4),Rn

MOV_LLE (Rm+,imm4),Rn
MOV_LLT (Rm+,imm4),Rn
MOV_LHI (Rm+,imm4),Rn
MOV_LCC (Rm+,imm4),Rn
MOV_LLS(Rm+,imm4),Rn

MOV_LCS (Rm+,imm4),Rn
MOV_LRA (Rm+,imm4),Rn
UDFO0 Dm,Dn

UDFO0 imm8,Dn

UDFO0 imm16,Dn

UDFO0 imm32,Dn

UDFO01 Dm,Dn

UDFUO1 imm8,Dn

UDFUO1 imm16,Dn

UDFUO1 imm32,Dn

UDF02 Dm,Dn

UDF03 Dm,Dn

UDF04 Dm,Dn

UDF05 Dm,Dn

UDF06 Dm,Dn

UDF07 Dm,Dn

UDF08 Dm,Dn

_ A A A A A A WD WDNDNONN A A A A AR QA QA Q Q@ @Q @Q @Q @Q @Q @Q Q@A QA QA A A Q QA QA A -

A A A A A A A DN WWW DA WWWWWWWWWWWWWW AR, A A D A A A

JEL L NI UL (I U U U ' T S T S T G T 'S T N6 T NG T N SRR Uk UL (S (UL U U (UL (U UL UL UL UL U (U UL (U (UL (UL UL UL UL (UL U (IS U (L UL U §
=) A A A A A A DN WWW DR WWWWWWWWWWWWWW R A A A A A A A A A A A A A

Rm is valid at Latency of 1.

Throughput is 2 if branch is
not taken.

MN103E SERIES THROUGHPUT & LATENCY 339

Chapter 4 APPENDIX

MN103E SERIES THROUGHPUT & LATENCY

AM33-1 AM33-2/AM33-2A NOTE

Assembly mnemonic Throughput Latency Throughput Latency
UDF09 Dm,Dn 1 4 1 1
UDF12 Dm,Dn 1 4 1 1
UDF13 Dm,Dn 1 1 1 1
UDF15 Dm,Dn 1 1 1 1
FMOV (Rm),FSn - - 1 4
FMOV (Ri,Rm),FSn - - 1 4
FMOV (d8,Rm),FSn - - 1 4
FMOV (d24,Rm),FSn - - 2 5
FMOV (d32,Rm),FSn - - 2 5
FMOV (d8,SP),FSn - - 1 4
FMOV (d24,SP),FSn - - 2 5
FMOV (d32,SP),FSn - - 2 5
FMOV FSm,(Rn) - - 1 -
FMOV FSm,(Ri,Rn) - - 1 -
FMOV FSm,(d8,Rn) - - 1 -
FMOV FSm,(d24,Rn) - - 2 -
FMOV FSm,(d32,Rn) - - 2 -
FMOV FSm,(d8,SP) - - 1 -
FMOV FSm,(d24,SP) - - 2 -
FMOV FSm,(d32,SP) - - 2 -
FMOV (Rm+),FSn - - 1 4
FMOV (Rm+,imm8),FSn - - 1 4
FMOV (Rm+,imm24),FSn - - 2 5
FMOV (Rm+,imm32),FSn - - 2 5
FMOV FSm,(Rn+) - - 1 -
FMOV FSm,(Rn+,imm8) - - 1 -
FMOV FSm,(Rn+,imm24) - - 2 -
FMOV FSm,(Rn+,imm32) - - 2 5
FMOV FSm,FSn - - 1 4
FMOV FSm,Rn - - 1 2
FMOV Rm,FSn - - 1 4
FMOV imm32,FSn - - 2 5
FMOV FPCR,Rn - - 1 2
FMOV Rm,FPCR - - 1 4
FMOV imm32,FPCR - - 2 5
FMOV (SP),FSn - - 1 4
FMOV FSm,(SP) - - 1 -
FABS FSn - - 1 4
FABS FSm,FSn - - 1 4
FNEG FSn - - 1 4
FNEG FSm,FSn - - 1 4
FRSQRT FSn - - 23 27

When input operand is 0,%,NaN or negative. - - 17 21
FRSQRT FSm,FSn - - 23 27

When input operand is 0,¥ NaN or negative. - - 17 21

340 MNI103E SERIES THROUGHPUT & LATENCY

MN103E SERIES THROUGHPUT & LATENCY

Chapter 4 APPENDIX

AM33-1 AM33-2/AM33-2A NOTE

Assembly mnemonic Throughput Latency | Throughput Latency
FCMP FSm1,FSm2 - - 1 4
FCMP imm32,FSm - - 2 5
FADD FSm,FSn - - 1 4
FADD FSm1,FSm2,FSn - - 1 4
FADD imm32,FSm,FSn - - 2 5
FSUB FSm,FSn - - 1 4
FSUB FSm1,FSm2,FSn - - 1 4
FSUB imm32,FSm,FSn - - 2 5
FMUL FSm,FSn - - 1 4
FMUL FSm1,FSm2,FSn - - 1 4
FMUL imm32,FSm,FSn - - 2 5
FDIV FSm,FSn - - 12 16
When input operand is 0,%,NaN or negative. - - 9 13
FDIV FSm1,FSm2,FSn - - 12 16
When input operand is 0,¥,NaN or negative. - - 9 13
FDIV imm32,FSm,FSn - - 13 17
When input operand is 0,¥,NaN or negative. - - 10 14
FMADD FSm1,FSm2,FSm3,FSn - - 1 4
FMSUB FSm1,FSm2,FSm3,FSn - - 1 4
FNMADD FSm1,FSm2,FSm3,FSn - - 1 4
FNMSUB FSm1,FSm2,FSm3,FSn - - 1 4
FMOV (Rm),FDn - - 1 4
FMOV (Ri,Rm),FDn - - 1 4
FMOV (d8,Rm),FDn - - 1 4
FMOV (d24,Rm),FDn - - 2 5
FMOV (d32,Rm),FDn - - 2 5
FMOV (SP),FDn - - 1 4
FMOV (d8,SP),FDn - - 1 4
FMOV (d24,SP),FDn - - 2 5
FMOV (d32,SP),FDn - - 2 5
FMOV FDm,(Rn) - - 1 -
FMOV FDm,(Ri,Rn) - - 1 -
FMOV FDm,(d8,Rn) - - 1 -
FMOV FDm,(d24,Rn) - - 2 -
FMOV FDm,(d32,Rn) - - 2 -
FMOV FDm,(SP) - - 1 -
FMOV FDm,(d8,SP) - - 1 -
FMOV FDm,(d24,SP) - - 2 -
FMOV FDm,(d32,SP) 2 -
FMOV (Rm+),FDn 1 4
FMOV (Rm+,imm8),FDn 1 4

MN103E SERIES THROUGHPUT & LATENCY 341

Chapter 4 APPENDIX

MN103E SERIES THROUGHPUT & LATENCY

AM33-1 AM33-2/AM33-2A NOTE
Assembly mnemonic Throughput Latency Throughput Latency
FMOV (Rm+,imm24),FDn 2 5
FMOV (Rm+,imm32),FDn 2 5
FMOV FDm,(Rn+) 1 -
FMOV FDm,(Rn+,imm8) 1 -
FMOV FDm,(Rn+,imm24) 2 -
FMOV FDm,(Rn+,imm32) 2 -
FBEQ (d8,PC) 3 -
FBNE (d8,PC) 3 -
FBGT (d8,PC) 3 -
FBGE (d8,PC) 3 -
FBLT (d8,PC) 3 -
FBLE (d8,PC) 3 -
FBUO (d8,PC) 3 -
FBLG (d8,PC) 3 -
FBLEG (d8,PC) 3 _ When Throughput is 1,the
FBUG (d8,PC) 3) divergence is failure.
FBUGE (d8,PC) 3 -
FBUL (d8,PC) 3 -
FBULE (d8,PC) 3 -
FBUE (d8,PC) 3 -
FLEQ 1 -
FLNE 1 -
FLGT 1 -
FLGE 1 -
FLLT 1 -
FLLE 1 -
FLUO 1 -
FLLG 1 -
FLLEG 1 - o)
Throughput is 2 if branch is
FLUG 1) not taken.
FLUGE 1 -
FLUL 1 -
FLULE 1 -
FLUE 1 -

342 MNI103E SERIES THROUGHPUT & LATENCY

Chapter4 APPENDIX

“pgwwl 0L00 T 000L LLLL LOLL LLLL |9 ol Il Al s ANIN<A'MST HIOW<-pgwwiIixe” 0182) HYDW' pgwuwl AOWN
TUWWI 0L00 T 0004 LLLL LLOL LLLL |¥ - -] -] - | JADN<AMSHI HIOW<-gWWI(}xe 0192z) HYDW'gwwi AOWN
0,00 "WyH 000L LLLL LOOL LLLL[E il I I AADN<-A'MSdI ' HIYDON<-WY HYOW'WH AOW
“ud 0100 000 OLLL LOOL LLLL[E il I I AN MSdI<-4dADN'Ud<-HYOIN UY'HYON AOWN
“ZEWW! 1000 000k LLLL ObLL LLLL |/ ot Bl el DYAW<-Zgwuw| DHANW‘zewwr AOW
“pgWWi 1000 000 LLLL LOLL LLLL|9 ot il el DHAN<-yZWWI(}x8 0192) DYANW ‘pgwwi AOW
TUgWIWE 000 T 0004 LLLL LLOL LLLL (Y ol el el OYAN<-gWWI(3xe 0.18Z) DYdN‘swwl AOW
1000 "Wy 000L LLLL LOOL LLLL|E ol Bl el e DHAN<-wy DYaAW'wy AOW
Uy 1000 0004 OLLL LOOL LLLL|E V| vV{0|0 uY<-0dain Uy'DYaiN AOW
T'ZEWW! 0000 000 LLLL ObLL bLLL|Z ol Il et dS<-zewuwl ds‘zewwr AOW
“'pZWW 0000 000 LLLL LOLL LLLL|9 o el e dS<-pzwwi(ixe 0182) dS'vewwi AOW
TUgWIWE 0000 T 0004 LLLL LLOL LLLL (Y ol el e dS<-gwuwi(ixe 0192) ds‘gwuwl AOW
Uy 0000 0004 OLLL LOOL LLLL|E i dS<-wy ds‘'wy AOW
00WY LLLLOLOO LLLL|Z i dS<-wy dS‘wy AOW
“UuY 0000 000} OLLL LOOL LLLL|E o Bl el uy<-ds uy‘'dsS AOW
uvLl 1100 |1 Lol uy<-ds uy‘'dsS AOW
olwallil 0L00 LLLL |2 ol I e Han<-wg HAN'wa AOW
ugoooLll 0L00 LLLL |2 ol e e ud<-4an ugyam AoOw
“rZewwl ——- Uy 0001 0000 OLLL LELL |2 - -] -] - uy<-zewuwl uy‘zewwr AOW
"Wl - Uy 0001 0000 LOLL LLLL |9 -l - - - Uy<-pzwuwi(ixe™ ubis) uy‘pzwwl AOW
“guwl - U¥ 0001 0000 LLOL LLLL |¥ -l -] - - Uuy<-gwwi(ixa ubis) uy‘gwuwl AOWN
“zewwiuadll 00kl 00LL LLLL |9 -l -] - - uQg<-zewuw ugzswwr AQOW
“rgLwwi udll 0100 [€ e e ug<-9Lwuwi(ixe ubis) ug‘olwwi AOW
“guiwiugud 000l |2 e e ug<-gwuwi(Ixe ubis) ug‘'swuwl AOW
“TZEWWIUYLL LOLL 00LL LLLL |9 -] - - uy<-gewuwl uy‘zewwr AOW
QLW UYLO 0100 (€ o Uy<-9wuwi(ixe 018z) uy'glwuwl AOW
“UguWIWl UYUY LOO0L |2 -l -1 -] - Uy<-guuwi(ixe 0192) uy‘gwuwi AOW
Uy "Wy 0001 0000 LOOL LLLL | -1 -1 -] - uy<-wy uy'wy AOW
ug-wHLl L0L0 LLLL |2 -1 -1 -] - ug<-wy ug'wy AOW
“uqwalo LoLo LLiL |2 -l -1 -] - uy<-wqg uy'wa AOW
Uy WHoL LOLO LLLL |2 -1 -1 - - uy<-wy uy'wy AOW
“Uq WY00 LOLO LLLL |2 - uy<-wy uy'wy AOW
uywaoLLl 1000 LLLL g -l -] - - uy<-wa uy'wag AOW
uqwy LoLL L1000 LLLL g -] - ug<-wy ugwy AOW
ugwa 00ol | ol I e ug<-wag uq'wa AOW
uywy Lol |1 o I e uy<-wy uy'wy AOW| AOW
. oS |1ZNHOHA
poJ aulyoey 5000 Bel uonesadQ SlUOWBU dnoio

13S NOILONYLSNI SRS FCO0LNIN

INSTRUCTION SET 343

Chapter4 APPENDIX

...... 8P UAO} L0L0 |2 o ug<-(gp(Ixe 0Jaz)+dS)zcwaw ua‘(ds'sp) AOW
'Zesqe ——- Uy 0411 00000LLL LLLL |2 ot il el uy<-(zgsge)zgwauw uy‘(zesqe) AOW
“pzsge - "uY 0LL}L 0000 LOLL LLLL |9 ot il el e uy<-(pzsge(ixe olez))zgwauwl uy‘(yzsqe) AOW
gsqe -—“UY L1} 0000 LLOL LLLL |7 ol Bl el uy<-(gsqe(ixe oisz))zgwaw uy‘(gsqe) AOW
"'ZESqe UY00 0LOL 00LL LLLL |9 -l -] uy<-(zgsqe)zswaw uy‘(zesge) AOW
"'91Sqe Uy00 0401 0L0L LLLL ¥ ot il el s uy<-(91Sqe(ixe 0iez))zgwaw uy‘(9rsge) AOW
"'Z€sqe uUdLo 0L0L 00LL LLLL |9 -l -] uQg<-(zgsae)zewaw uQ‘(zesqe) AOW
""91Sge uaoo L10o |§ -l -] -] ud<-(91sqe(ixe oJaz))zewauwl :o ‘(9Lsqe) AOW
- U WY Y OLLL 000k LLOL LLLL ¥ ol Bl et s uy<-(Wwy+y)zewaw H(wyy) AOW
WYIQ UvoL LL00 LLLL |2 ol Bl et s uy<-(Wy+g)zswaw :<AE< 1a) AOW
wy!Q ugoo LLoo LLLL |2 -1 -1 -] uQ<-(wy+ia)zewesw a‘(wyia) AOW
..... ZEP "Wy "uY 0101 0000 0LLL LLLL |2 o B el s uy<-(zep+wy)zewaw w_ AEw_ ZEP) AOW
..... 2P "Wy Uy 0L0L 0000 LOLL LLLL |9 -l -] -] - uy<-(yzp(Ixe ubis)+wy)zewauw w_ (Wwy'yzp) AOW
...... 8P "Wy “UY 0LOL 0000 LLOL LLLL | o Bl el uy<-(gp(1xe” ubis)+wy)zswaw y'(wy‘'gp) AOW
..... ZEP WYUY 0L0000LL LLLL |9 i uy<-(Zep+wy)zgwaw c<§< ZEP) AOW
..... 91P WyUY 0L000LOL LLLL |¥ -l -] -] uy<-(91p(1xe ubis)+wy)zewaw uy‘(wy‘gLp) AOW
...... 8P WYUY 0100 0004 LLLL € s uy<-(gp(ixe ubis)+wy)zcwaw uy‘(wy‘gp) AOW
..... ZEP WYUQ 0000 00LL LLLL |9 i uQg<-(zgp+wy)zcwaw cn_AE< ZEP) AOW
..... 91p Wyud 0000 04O} LLLL | - -] -] - ug<-(91p(Ixe” ubis)+wy)zewaw a‘(wy'aLp) AOW
...... 8p Wyud 0000 0001 LLLL [€ -l -] - - ug<-(gp(1xe" ubIs)+wy)zcwaw cn_ (wy'gp) AOW
“wy Uy 0L0L 0000 LOOL LLLL |€ -l -] - - cmA-MEmWNmEmE :mnMEmw AOWN
WUy 0000 0000 LLLL |2 I EE uy<-(Wy)zewaw uy‘(wy) AOW
wyua Lo |l - - - - ug<-(wy)zgwauw ug(wy) AOW
uvL1l 0L00 0000 bLLL |2 s uy<-O0d uy'dd AOW
TZEWW! 00L0 T 0004 LLLL OLLL LLLL[Z s AADOW<-[olzewwi 4AADIWZEWWI AOW
“pzwWwi 00L0 T 000L LLLL LOLL LLLL |9 -l -1 -] - AADOW<-[olyzwwi AADW pgwwi AOW
TUgwWl 00L0 T 000L LLLL LLOL LLLL | -l - - dADN<-[o]gww JADW'swWW! AOW
00L0 "Wy 000 LLLL LOOL LLLL|E ol e e dADN<-ToJwy JADN'WY AOIN
“uy 00L0 000L OLLL LOOL LLLL|E -0 -] - - [1:1€]ud<-00000000%0°T0OJud<-4ADIN U4 4ADIN AOW
Zewwl LL00 U 000L LLLL OLLL LLLL|Z - AADN<-A"MSdT THON<-gswwl TIOWZEWWI AOW
Tpgwwl LL00 U 000L LLLL LOLL LLLL |9 -1 -1 -1 - | AADIN<-A"MSdI THON<-gwwi(3xS 0192) TIOW Wl AOW
TUgWIWE LLOO T 0004 LLLL LLOL LLLL | -1 -7 -1 -1 AAON<-A'MSdI TION<-8WWI(}xS 0132) TIOWswwl AOIN
1100 "Wy 000L LLLL LOOL LLLL |€ e AADIN<-A'MSdT THON<-WY TdON'WH AOW
“ud 1100 000L OLLL LOOL LLLL]Ee [é|é] 0]V A MSdI<-IADNUL<-TION U4 TIOIN AOIN

TZEWW! 0L00 T 000 LLLL OLLL LLLL[Z -1 -1 -1 AADIN<-A"MSdI HIDW<-Zgwul HYOWZEWW! AOW | Aoy

ozS
apoD aulyoep 5000 H_N_n_ﬁw_ﬂ_ u_o_u_> uonelado OIUOWBU dnoio

13S NOILONYLSNI SARIFS FC0LNIN

INSTRUCTION SET

344

Chapter4 APPENDIX

...... 8P LLWY 0010 |2 i il el (gp(1xe~ 0482)+dS)zZEWBWI<-WY (dsS'8p)'wy AOW
..... ZEP LOWA LOOL 00LL LLLL |9 o e e (Zep+dS)zZewaw<-wag (dS‘zep)'wa AOWNW
..... 91P LOWA 100} 04O} LLLL ¥ ol il el (91p(1x® 0182)+dS)zgWaw<-wQg (dS‘9Lp)'wa AOW
...... 8P 0LWQA 00L0 |2 ol B el s (gp(1xe” 0492)+dS)zeWaw<-wg (ds‘gp)'wa AOW
'Zesqe -—— Wy oL} L000OLLL LLLL |/ ot Bl el (zgsge)zgwau<-wy (zgsqe)'wy AOW
“'pzsge "Wy 0LLL 1000 LOLL LLLL |9 e e (pzsqe(ixe 0Jaz))zcwaw<-wy (pzsqe)'wy AOW
gsqe -— WY 0LLL 1000 LLOL LLLL ¥ ol il el (gsge(1xe 0Joz))zcwWaw<-wy (gsge)'wy AOW
"'ZEsqe 00WY 000} 00LL LLLL |9 -l -] (zesge)zewaw<-wy (zgsqe)'wy AOW
“'g1Sqe Q0WY 0004 0LOL LLLL ¥ ol Bl el s (91s9e(1xa 0J82z))ZEWol<-WY (91sqe)'wy AOW
“'ZEsqe Lowd 000L 00LL LLLL |9 -1 -1 -] (zesge)zewaw<-wq (zesge)'wa AOW
“"91Sqe LoWa 0000 |€ ol Bl et s (91sge(1xa 0Jaz))zcWow<-wq (91sge)'wa AOWN
= WY UM I OLLL LOOL LLOL LLLL |b ol Bl et s (UY+1Y)Zswaw<-uwry (uyd'1y)‘'wy AOIN
uyiqWyLL LLOO LLLL |2 -1 -] -] (uy+1a)Zswaw<-wy (uy1d)'wy AOW
uyigq Wwalo LLoo LLLL |2 HEEE (uy+lg)zewesw<-wq (uyig)’'wa AOW
..... ZEP "UY WY 0LO0L LOOOOLLE LELL |2 o Bl el (zep+uy)zewoaw<-wy (uy‘zep)'wy AOW
..... 2P Uy "Wy 010} 1000 LOLL LLLL |9 -l -] - - (Pzp(1xe ubis)+uy)zewaw<-wy (uy‘vzp)'wy AOW
...... 8P "UY WY 0L0L LO0O LLOL LLLL [P -l -] -] (8p(1xa ubIsS)+uy)zZEWaW <-Wy (uy'gp)'wy AOW
..... ZEP UYWY LLO000LL LLLL |9 i (zep+uy)zZewaw<-wy (uy‘zep)'wy AOW
..... 9LP UYWY LL000LOL LLLL |¥ -l -] -] - (91p(1xe™ UBIS)+UY)ZEWaW<-WY (uv'oLp)'wy AOW
2."gP UYWY 1100 000} LLLL |€ -l -] - - (gp(1xe ubIs)+uy)zewaw<-wy (uy'gp)'wy AOW
..... ZEP UYWA LO00 00LL LLLL |9 -l -] - - (zep+uy)zswaw<-wQg (uy‘zep)'wa AOW
..... 91p UYWQ LO00 0LOL LLLL |1 -l -] - - (91p(ixe ubis)+uy)zcwauw<-wq (uy‘aLp)'wa AOW
...... 8P UyWA L000 000L LLLL |€ - -] - - (gp(1xe™ ubIs)+uy)zgwaw<-wq (uy'gp)’'wa AOW
Uy Wy 0L0L LO0O LOOL LLLL |€ -l - - - (ud)zewaw<-wy (ud)'wy AOIN
uywy 1000 0000 LLLL |2 -l - - - (uy)zewaw<-wy (uy)'wy AOW
uywaoLLo |1 o (uy)zewaw<-wq (uy)’wa AOW
...... 8P WY00 LLLL 000L LLLL|E -1 -1 -] - (gp(1xe ubis)+wy)zcwaw ds(wy'gp) AOW
..... ZEP - "ud 0L0L 000L OLLL LLLL |2 - - - uy<-(zep+dS)zcwaw uy‘(ds‘zepr) AON
..... ¥Zp --- Uy 0L0L 000} LOLL LLLL |9 -0 -] - - uy<-(yzp(1xe 019Z)+dS)zcWwaw uy‘(dsS‘vep) AON
...... 8P --- U4 0L0L 000} LLOL LLLL |¥ -l - - uYy<-(8p(1xa 018z)+dS)zcwawl uy‘(ds'sp) AOW
—-=- U4 0L0L 000} LOOL LLLL |E)| uy<-(dS)zcwaw uy(dsS) AOW
..... ZEPUY00 LLOL 0OLL LLLL |9 i uy<-(zep+dsS)zcwaw uy(dszep) AOW
..... 9LPUY00 LLOL 0LOL LLLL |¥ S uy<-(91p(1xa 018z)+dS)zcwaw uy(ds9Lp) AOW
...... 8P UuVLL L0LO (2) uy<-(8p(IXa 019Z)+dS)zcwaw uy'(ds'sp) AOW
..... Zepualo Lol 0oLl LLLL |9) ug<-(zep+dS)zcwaw ua(dszep) AOW

..... 9LPuaLO LLOL OLOL LLLL |1]| uQa<-(91P(x8 0J8z)+dS)ZEWaw uai(ds'aip) AOW| pow

ozS
8apoD auIyoe 5000 u_N_n_mW_ﬂ_ n_o_u_> uoneladp OIUOWBUIN dnoio

13S NOILONYLSNI SRS FCO0LNIN

INSTRUCTION SET 345

Chapter4 APPENDIX

[91:1€lua<-0000%0
..... ZEPWYUAOLLOO0LL LLLL|9 | =) -| -] - _ﬁo“m:coAﬁ-AvaﬂE,&@_‘EmE ug‘(wy'zep) NHAOW
91:1£]ud<-0000%0
..... 9LPWYUd0LL00Lob LiLL|y | -| -| -| -| ‘[0:G1]ud<-(91p(3x® ubis)+wy)9|waw ua‘(wy'9Lp) NHAOW
[91:1€]ua<-0000%0
...... 8P WyUd 0410 000L LILL | -1 -] -] -| ‘lo:Ss1lug<-(gp(3xe”ubis)+wy)g | waw ug‘(wy‘gp) NHAOW
“Wy "UY 0L0L 0040 LOOL LLLL | -1 - -] - [91:1€]ud<-0000%0[0:G 1 Jud<-(Wy)9) ol uy‘(wy) NHAOW
wyua oL Lo 0000 LLLL |2 - -] - - [91:1€]ua<-0000%0°[0:G 1 Jua<-(wy)g L waw ug‘(wy) NHAOW INHAOW
ZEWWl - U 000} LOOO OLLL LLLL |2 ol i e Uy <-gewui uy‘zewwl NAOINW
U pgWWl - Uy 000} L000 LOLL LLLL |9 il il el Uy<-ygwwi(jxe 01az) uy‘ygwuwl NAOINW
guwl ---- Uy 0001 1000 LLOL LLLL |€ e uy<-gwuwi(}xa0Jaz) uy‘gwwi NAOW | NAOIN
LlwaiiLLoLooLLLL |2 e MSd<-wd MSd‘'wWwa AOW
udaiooLLLoLo0 bl |2 e ud<-MSsd ua‘msd AOW
LowalLLLLoLooLLLL |2 -l -] -] - MSd3<-wg MSd3‘wag AONW
uaLLoLLLoLooLLLL |2 o e e ud<-MSdd uga‘msda AOW
00WY 11000000 LLLL |2 o e e dSn<-wy dsn‘wy AOW
uvy00 01000000 LLLL |2 -l -] -] uy<-dsn uy‘dsn AOW
LOWY LL00 0000 LLLL |2 -l -] - - dSS<-wy dSS‘wy AOW
uyL0 01000000 LLLL |2 -l -] -] uy<-dSs uy‘'dsSsS AOW
0LWY 11000000 LLLL |2 -l -] - - dSN<-Wy dsw‘wy AOW
uvy0lL 0L000000 LLLL |2 - - - - uy<-dSIN uy‘dSIN- AOIW
“ud Wy 0L0L LLLO LOOL LLLL |€ -l -] -] - UY<-p+uy’(ud)zewaw<-wy (+uy)'wy AOW
TrZeWwl Uy WY 0LOL LLLOOLLL LLLL [-l - -] - Uy<-gzewwl+uy(uy)zewaw<-wy | (zewwi'+uy)'wy AOW
THZWWL U WY 0L0L LLLO LOLL LLLL |9 -1 -] -] - ud<-pzwwi(xe ubis)+uy(ud)zewaw<-Wy [(yzwwi'+uy)'wy AOW
TrguWL U WY 0L0L LLLO LLOL LLLL [P -1 -1 -1 - ud<-swwi(ixe ubis)+uy(uy)zewaw<-wy (guuwi+uy)‘'wy AOWN
“wy Uy 0101 0410 LOOL LLLL |€ -l - - - W <-p+Wy Uy <-(WH)zewaw uy‘(+wy) AOW
rzewwl wy ud 0L0L 0LLOOLLL LLLL |2 -l -] - - Wy<-zewwl+wyuy<-(wy)zewsw | uy‘(zewwi'+wy) AOW
TpZWWL WY CUY 0101 OLLO LOLL LLLL |9 -1 -1 -1 -] wdspgwwi(xe ubis)+wyud<{wy)zewsw [uy‘(yzwwil‘+wy) AOW
Trguwl Wy Uy 0L0L 0LLO LLOL LLLL [P -] - - WH<-8WWI(Xd UBIS)+Wy Uy <-{WH)zewsw uy‘(guuwir'+wy) AOW
...... SPUVLO LLLL OO0 LLLL[E -1 - - - (8p(1xa ubis)+uy)zcwaw<-dS (uy‘'gp)'dS AOW
..... ZeP "Wy 010} LOOL OLLL LLLL |2 -1 -1 -] - (zEp+dS)zewawi<-wy (dSzep)'wy AOW
..... ¥Zp - "Wy 010} LOOL LOLL LLLL |9 -1 -1 -1 - (yZp(1xe 019Z)+dS)zcWali<-Wy (dSvzp)'wy AOW
...... 8P ---- "W 0L0L LOOL LLOL LLLL [P -l -] -] - (8pP(1xe 019Z)+dS)zEWa<-Wy (ds'sp)’'wy AOW
—— WY 0LOL LOOL LOOL LLLL € -1 -] -7 - (dS)zcwauw<-wy (dS)'wy AOW
..... ZEP 00WY LOOL 00LL LLLL |9 -1 -] -7 - (Zep+dS)zewaui<-uy (dS‘zep)'wy AOW
..... 91P 00WY LOOL 0LOL LLLL [¥ -1 -1 -1 - (91P(Ixa 0J8Z)+dS)zEWal<-WyY (dS9LP)'wy AOW | AON
8ZS
apoD aulyoey 5000 u_N_n_HW_ﬂ_ u_o_u_> uonesadQ 2IUOWBUN dnouo

13S NOILONYLSNI SARIFS FC0LNIN

INSTRUCTION SET

346

Chapter4 APPENDIX

UM W 0404 LOLO LOOL bbLLIE | | T -] - (uy)9) wow<-[0:G}]wy (ud)'wy NHAOW

uywa 1Li00000LLLL g | -] | -] - (uy)9Lwaw<-[o:G1]wa (uy)'wag NHAOW
[91:1€]lud<-0000%0

..... ZEP - "UuY 0L0L 00LL OLLL LLLL [/ ot il el ‘lo:61luy<-(zep+dS)9L Wow uy‘(ds‘zer) NHAOW
[91:1€]ud<-0000%0

..... ¥Zp - "ud 0L0L 00bL LOLLLLLLIG | - | - | -| -| ‘[0:G1]uY<-(yZP(1xe 019Z)+dS)9|Waw uy'(dS'vePr) NHAOW
[91:1€]ud<-0000%0

...... gp = "UY 0L0L 00LL LLOL LLLL Y | | -] 7| - ‘[0:51]uy<-(gp(1xe 0102)+dS)9 | Wow uy‘(ds'spP) NHAOW
[91:1€]ud<-0000%0

U4 0L0L 00LL LOOL LLLL e | - | -] -] - [0:G1lud<-(dS)91L wow ud'(dsS) NHAOW
[91:1€]ud<-0000%0

..... ZEPUALL LLOLOOLLLLLLI9 | | | 7| - ‘[0:G1]ua<-(zep+dS)9) Wwaw ua‘(ds‘zep) NHAOW
[91:1€]ud<-0000%0

..... apuail biob oo Lk |y | - - -] -| ‘lo:G1lua<-(91p(xeT0182)+dS)9 | Waw ua‘(ds‘alp) NHAOW
[91:1€]lua<-0000%0

...... gpuall LLoLoooL bLikle | -] | - - ‘[0:51]ug<-(gp(1xe 0192)+dS)9 | Wow ua‘(ds'sp) NHAOW
[91:1€]lud<-0000%0

“'Z€Sqe - UM 0L 1L 00L0OLLL LLLL |2 -l -] - - ‘l0:51luy<-(zesqe)g L woaw uy‘(zesae) NHAOW
[91:1€]ud<-0000%0

“pzsqe ——"ug 0LLL 00L0 LOLL LLLL|9 | | -] | - [0:51]ud<-(yzsqe(1xe 01az))g| walw uy‘(¥zsae) NHAOW
[91:1€]ud<-0000%0

~gsqe - “UY 0LLL 00LO LLOL LLLL | | - | - | -| - ‘[0:G1]uy<-(gsqe(ixe” 0Jaz))g| wow uy'(gsae) NHAOW
[91:1€]u@<-0000%0

~zesqeudrL oLoLoobb bikk o | - | - | - - ‘[0:1]ua<-(zesqe)9 L waw ua‘(zesge) NHAOW
[9171€]U@<-0000%0

~gisqeuaol Lhoole | - | -] | - ‘[0:51]ua<-(91sqe(1xe 0192))g| Wal ua‘(9Lsge) NHAOW
[91:1€]UH<-0000%0

Uy W R OLLL 00LL LLOL LLLL ¥ o R B [0:51]uyd<-(wy+1y4)9 L wow uy(Wwy'd) NHAOW
[9171€]U@<-0000%0

wyIQ uaol 00L0 LLLL |2 S ‘[0:51]ug<-(wy+1Q)9) wew ug(wy'ia) NHAOW
[9171€]UH<-0000%0

..... ZeP "Wy U4 0L0L 00LOOLLL LLLL |2 ol Bl el ‘[0:51]uy<-(zep+wy)9 L wow uy‘(wy‘zepP) NHAOW
[9171€]UE<-0000%0

..... ¥ZP "Wy "ud 0L0L 00L0 LOLL LLLL |9 | - | - | -| -| ‘[0:GLlud<~(91p(xe UBIS)+WH)9l Wwaw uy'(wy'yzp) NHAOW
[9171€]UE<-0000%0

...... gp “wy “ud 0L0L 00L0 LLOL LLLL | | - | - | -| | [0:G1lud<-(8p(3xe UBIS)+wH)9 | waw uy‘(wy'gp) NHAOW NHAOW
oS |1ZNHOHA
apon) auIyoeN 5000 Bel uonesado OluoWwsunp dnouo

13S NOILONYLSNI SRS FCO0LNIN

INSTRUCTION SET 347

Chapter4 APPENDIX

"Wy Uy 0L0L 0100 LOOL LLLL |€ -1 -] -] -| I[8:1€lud<-000000X0[0: Jud<-(wy)gwaw uy‘(wy) NIGAOW
wyud 0010 0000 LLLL |Z -1 -1 -] -] [8:1€lua<-000000%0°[0: lua<-(wy)guwew ug‘(wy) NGAOW naAow
“UY WY OLOL LLLL LOOL LLLL | ot Bl el uy<-z+uy'(uy)9l waw<-[p:gL]wy (+uy)'wy NHAOW
rzewiwl Uy Wy 0L0L LELLOLLL LLLL |2 -1 -] -] -] ud<-gewwi+uy(uy)9Lwew<-[0:gL]wy | (zeww +uy)'wy NHAOW
uy<-pgwuwi(3xa ubis)+uy
Wl Uy W 0LOL LLLL LOLL LLLL |9 ot el el ‘(uy)9lwaw<-[0:GL]wy | (Yewwr'+uy)'wy NHAOW
uy<-guuwi(3xa ubis)+uy
CUQWIWL U WY 0LOL LLE LLOL LLLL b o B el ‘(uy)9lwaw<-[0:gL]wy | (guuwi‘+uy)'wy NHAOW
wY<-g+Wy'[9L:1£]ud<-0000%0
“WY "UY 0LOL OLLL LOOL LLLL |E -l -] ‘[0:G1]uy<-(wy)9 L wew uy‘(+wy) NHAOW
wy<-ggwwi+wy ‘(91 1 £]ud<-0000X0
TZEWWl WY Uy 0L0L OLLL OLLL LLLL . -l -] - - ‘[0:GLIud<-(wy)9 L wew | uy‘(Zewwi'+wy) NHAOWN
Wi<-pzwwi(xs ubis)+wdToL:L€Jud<-0000%X0
Wl WY "uq 0L0L OLLL LOLL LLLL |9 -l -] -] - ‘[0:GL]ud<-(wy)9 L wew | uy‘(FZwwi'+wy) NHAOW
Wy<-guiwi(xe ubis)+wiyT9}:1.€]ud<-0000%0
“eguiwl Wy Uy 0104 0LLL LLOL LLLL | ¥ -l -] -] - ‘0:GLlud<-(wy)9Lwoaw | uy‘(gwuwi‘+wy) NHAOW
..... ZEP - "WH 0LOL LOLL OLLL LLLL |2 - -] -] - (zep+dS)9Lwaw<-[0:GgLJwy (ds‘zep)'wy NHAOW
..... ¥Zp - "Wy 010} LOLL LOLL LLLL |9 -1 -1 -1 -1 (pep(xe olez)+dS)9lweaw<-[0:GLwy (dS'vzp)'wy NHAOW
...... 8p - WY 0LOL LOLL LLOL LLLL | s (8p(1xe 0J92)+dS)9l Waw<-[p:GL]wy (ds'gp)'wy NHAOW
== "Wy 0L0L LOLL LOOL LLLL |€ s (ds)9lwaw<-[0:g1]wy (dS)'wy NHAOW
..... ZEP LLWA LooL 00LL LLLL |9 -] - - (zep+ds)9lwew<-[o:51]wQa (dszep)'wa NHAOW
..... 9Lp LLWa LooL OLOL LLLL ¥ -1 -1 -1 -] (9lp(xe 0i8z)+dS)9lwaw<-[0:5L]wqa (ds‘9Lp)'wa NHAOW
...... 8P LLWQ LOOL 000L LLLL |€ -0 - - (gp(ixe o18z)+dS)9lWwaw<-[0:g1]wa (ds'sp)'wa NHAON
'zesqe - WY OLLL LOLOOLLL LLLL |2 e (zesqe)glwaw<-[0:GLJwy (zesge)'wy NHAON
“pgsqe - WY 0LLL LOLO LOLL LLLL |9 -t - - (yzsae(xe ol1az))glwaw<-[0:GLJwy (yzsae)'wyd NHAOW
"gsqe - WY OLLL LOLO LLOL LLLL |b -t - - (gsge(ixe 0492z))9|waw<-[0:G}Jury (gsge)’'wy NHAOW
"'Zesqe | Lwaoo0k 00LL LLLL |9 -l - - - (zesqe)9lwaw<-[0:G1JwuQg (zesge)’'wa NHAON
“*g|sqe | LW 0000 |§ -0 -] - - (91sqe(ixe oloz))glwaw<-[0:GL]wqa (91sge)’'wa NHAON
- Wy U T OLLL LOLL LLOL LLLL | - (ug+rd)9L wawi<-[0:G 1 Jwy (U) 'WwY NHAONW
uyiqwatl 00Lo LLLL |2 - (uy+1@)9 L waw<-[0:GLwa (uyl@)'wd NHAOW
..... ZEP Uy "WH 0L0L LOLOOLLL LLLL |2 e (zep+uy)9lwaw<-[0:G|Jwy (uy'zep)'wy NHAONW
..... ¥Zp "ud "Wy 0L0L LOLO LOLL LLLL |9 -1 -1 -1 -1 (yep(xa ubls)+uy)olwaw<-[0:G|Jwy (Udvep)'wy NHAONW
...... 8P "uY "WH 0L0L LOLO LLOL LLLL |7 -1 - - - (8pP(IXa ubis)+uy)9lWaw<-[0:G]Jwy (ud'gp)'wd NHAOW
..... ZepuywaLLioooLl LLLL |9 el (zep+uy)glwaw<-[0:G1Jua (uy'zep)'wa NHAOW
..... 9lpuvywd LLLoOoLOL LLLL [P -1 - - - (91p(1xa ubIs)+uy)9lwaw<-[0:Gl]wa (uv'oLp)'wad NHAOW
...... 8pUYWA 1110000k LLLL [€ NI (8P(IX8 UBIS)+UY)9 L Wew<-[0:GLIwa (Uv'gp)'wa NHAOWPHAOW
8z3
8p0o) auIyde 5000 u_N_n_HW_ﬂ_ u_o_u_> uoneladQ JlUOWBUIN dnouo

13S NOILONYLSNI SARIFS FC0LNIN

INSTRUCTION SET

348

Chapter4 APPENDIX

uywa 10100000 LLLL |2 ol Bl el (uy)gwaw<-[p:/]wg (uy)'wa NgAOW
. Uy <- X
..... ZEP - "UM 0LOL OLOLOLLL LLLL (2 i Bl el ._o&,mm_wwumwu+mmﬁwmwcwcm uy'(ds‘zer) NGAOW
. u - X
..... ¥ZP - "UY 0LOL 0LOL LOLL LLLL |9 ol et el e _8“ucmA-?Nucﬁmmww__mww%_mﬁwmmhwcm uy'(ds‘yzP) NGAOW
...... 8P - "UY 0L0L 0LOL LLOL LLLL |¥ ol et el e .8“mcm_A-Awucﬁmm.uww_gwwﬂw_mﬁwmm_wxcm uy'(ds‘sP) NGAOW
-~ "UY 0L0L 0LOL LOOL LLLL |E -1 -] -] -] [8:1€lud<-000000%00: Jud<-(dS)gwaw uy‘(dsS) NGAOW
. u - X
..... ZEPUAOL LLOL OOLL LLLL |9 o B el __o”thmwwumwcwm%mwwcm ua‘(ds‘zep) NGAOW
. u - X
..... 9LPUA0L LLOL OLOL LLLL ¥ -1 -] -] .85:048%cﬁmowwmmwﬁnu_%mmhwcm ua‘(ds‘aLp) NGAOW
...... 8P udol LL0L 000L LLLL |€ -l -] -] - ,8”tcoA-Awocﬁmmwwﬁmﬂm_%mmwx& ua‘(ds‘sp) NGAOW
'Zesqe - "UY OLLL 0LO0OLLL LELL |2 - -1 -1 -1 [81elud<-000000%0T0:Jud<-{zesae)guwaiu uy‘(zesae) NGAONW
. u - X
“pZSqe - "UY 0LL1 0L00 LOLL LLLL |9 -] -] .8“mcm_A-?Nwmhﬁmmmww%mwcwcm uy‘(yzsae) NGAONW
“gsqe - Uy 0LLL 0100 LLOL LLLL |¥ -] -] _8“mcm_A-Awwmmﬁmmmﬂw%mmhwxcm uy‘(8sge) NGAOW
“'Zesqe uaol 0L0L 00LL LLLL |9 -1 -1 -1 -1 [81€lua<-000000%070:2Jua<{zesqe)guiaw uag‘(zesae) NGAON
"'915qe udlo L1oo |€ -l -] -] - .8&:048_Mﬁmwmﬂm%mwwxm ua‘(grsae) NGAONW
U WY T 0L L OLOb LLOL LLLL | -1 -1 -7 -1 T81€lud<-000000X0T0-ZJud<{wy+g)gwaw uy(wytd) NGAOW
WYIQ uaoo 00Lo LLLL |2 -1 -1 -7 -1 T81€lua<-000000%0T0:Jud<-{wy+a)gwew ug(wy1a) NgAONW
. u - X
..... Zep "Wy Uy 0L0L 0LOO OLLL LLLL |2 o e _Ho“tcm%mmwﬂmm_wmm_wcm uy‘(wy‘zep) NGAOW
. u - X
..... 2P "Wy U4 0L0L 0L00 LOLL LLLL |9 -] - - .8“tcmA-?chmwowww_wﬂrmmwmwcwcm uy‘(wy‘yzp) NIGAOW
. u - X
...... 8p "Wy UM 0L0L 0L00 LLOL LLLL |¥ -] - - .8”tcmA-AwuewaM_m_MMrwmﬁmecwcm uy‘(wy‘sp) NIAOW
. u - X
..... ZEP WyUQ 00L0 00LL LLLL |9 o e e .Sﬁ_c_m“.m_mmwwém@wmm_wcm ug‘(wy‘zep) NGAOW
. u - X
..... 91p Wyud 00L00LOL LLLL | o R B .85548%cmwm%_m_mﬁrw@wmmcwcm uag‘(wy‘9Lp) NGAOW
. u - X
...... 8P Wyud 00100004 LLLL |€ - -] - - ,85coA-chcmwmwa_MMrw@wmwcwcm ug‘(wy‘gp) NIAOWN haron
8apoD auIyoe MM_M u_N_n_mW_ﬂ_ n_o_u_> uoneladp OIUOWBUIN dno.g

13S NOILONYLSNI SRS FCO0LNIN

INSTRUCTION SET 349

Chapter4 APPENDIX

Uy "Wy 000L L0LO LOOL LLLL |E ol Bl Bl UY<-4444%08uy uy NH1X3
uatl 100o || ol Bl el ug<-4444xoua ug NHLX3 |NHLX3
-1 -1 -] - UY<-000044d44x0lwy esje’
UM "Wy 000L 0040 LOOL LLLL |€ ot il el cmA-“_“_“_“_xowemaum__%.Em:_ uy'wy HIX3
ol I e uY<-00004444x0|uy os|e
UM U4 0001 00L0 LOOL LLLL |E o el el coA-“_“_“_“_xowcmaum_Eg.cmz_ uy H1X3
ol I ud<-00004444xoluqg osje’
uaol 1000 || -l -] -] - ud<-4444x0ualo=51dq-ua)) uag H1X3 | HIX3
-l -] -] - HAW<-44444444%0 8s|e’
- "UY 0001 1000 L0OL LLLL |€ ol Bl et s HAW<-0X0(0=1L£dq uy)yl uy 1x3
uaoo LoLL 0LO0 LLLL |2 i {ua'dani<-(uag)iixe ubis) ua 1x3| ix3
sBos L1 00LL 000L LLLL |€ B EE abed ,WAOW. 89S [(dsn)Tubai L 6ai] WAOW
“sBal0LLL 00LL 000L LLLL |E e abed ,WAOW. @S | [ubas | 6ai] (dSN) WAOW
“sBal L1 00L) | -l -] -] - abed ,NAOW. 883 | (dS)Tubai " 6ai] NAOW
~sBaigLLL 00LL |2 NN abed ,WAOW. 0S| [ubas ™ Bai]'(dS) WAOW |NAOW
..... ZEP - WY OLOL LLOLOLLL LLLL |2 -l -] -] (zep+ds)gwaw<-[o:/]Jwy (dS‘zep)'wy NGAOW
..... ¥Zp - "Wy 0L0L LLOL LOLL LLLL |9 - -] -] - (Pzp(1xe 0192)+dS)gwaw<-[0:2Jwy (dS'pzp)'wy NaGAOW
...... 8p - WY 0LOL LLOL LLOL LLLL | i (gp(1xe 0J9z)+dS)gWwaw<-[0:2]wy (ds'gp)'wy NaAON
- WY 0L0L LLOL LOOL LLLL |€ s (dS)gwaw<-[0:2]wy (dS)'wy NaGAOW
..... ZEP 0LWA LOOL 00LL LLLL |9 s (zep+ds)gwaw<-[o:/Jwa (dS‘zep)'wa NaAOn
..... 91LpP 0LWA LOOL OLOL LLLL ¥ -1 -1 - - (91p(ixe 0182)+dS)gwew<-[0:/Jw@ (ds‘aLp)'wa NaAOWn
...... 8P 0LWA LOOL 000L LLLL [€ -l - - - (gp(ixe olaz)+dS)gwaw<-[o:/Jwua (ds'sp)’'wa NgAOWn
'Zesqe - WY OLLL LLOOOLLL LELL |2 -l - - - (zesqe)gwaw<-[p:/]wy (zesge)'wy NGAOW
“pZsqe - WY OLLL LLOO LOLL LLLL |9 - - - (yzsqe(ixe oiez))gwaw<-[0:/]wy (pzsge)'wy NGAOW
"gsqe - WY OLLL LL0O LLOL LLLL |b - - - (gsqe(ixe o0uaz))gwaw<-[0:2Juy (gsge)'wy NaGAON
"'Z€sqe 0LWa 000L 00LL LLLL |9 - - - (zesqe)gwaw<-[0:/]Jwq@ (zesae)’'wa NaAOW
"9l sqe QLwq 0000 |§ -0 -] - - (91sqe(xa olaz))gwew<-[0:/Jwq (91sge)’wa NGAOW
- W UY CTH OLLL LLOL LLOL LLLL |b -l - - (uy+ry)gwaw<-[o:2Jwy (UYT)'wy NGAON
uyliqwatooolo LLLL |2 - (uy+1@)gwaw<-[0:/Jwg (uy'l@)'wa NaAoOn
..... ZEP Uy "WH 0LOL LLOOOLLL LLLL |2 L) (zep+uy)gwaw<-[0:/Juy (ug'zep)'wy NaGAON
..... ¥ZP Uy "W 0L0L LLOO LOLL LLLL |9 L (yZp(Ixa ubis)+uy)gwaw<-[0:/]wy (ud'yzp)'wy NGAON
...... 8P “UY "W 0LOL LLOO LLOL LLLL [P NI (8p(1xe uBIs)+uy)guwsui<-[0:/]uy (Ug'gp)' Wy NGAOW
..... Zepuywa LoLo 0oLL LLLL |9 Sty (zep+uy)guaw<-[0:/Jwq (uy'zep)'wa NaAoON
..... 9Lpuvywd LOLo0LOL LLLL |¥ - - - - (91p(1xa ubIs)+uy)gwaw<-[0:/Juag (uv'oLp)'wa NaAON
...... 8p uywa LOL0 000k LLLL € -1 - - (8p(1xa UubIs)+uy)gwaw<-[0:/Jwg (uy'gp)'wa NaGAON
“uy "W 0L0L 1100 LOOL LLLL |€] (Ud)gwswi<-[0:Z]wy (Ud)'wd NGAOW hapnonw
az1S
8p0D BUIYB 5000 u_N_n_HW_ﬂ_ n_o_u_> uonelsadQ OlUOWABU dnouo

13S NOILONYLSNI SARIFS FC0LNIN

INSTRUCTION SET

350

Chapter4 APPENDIX

TZEWWIOLLL LLLLOOLLLLLL]9 | V[V| V]|V dS<-dS+zgwuw ds‘zewwr gavy
TTQLWWIQOLLL LLLLOLOL LLLL ¥ Sl dS<-dS+9lwuwi(3xa ubis) ds‘'olwwi gay
TUQWIWIOLLL LLLL O0OL LLLL € o I e dS<-dS+gwuwi(3xeubis) ds‘swwi aav
“TZEWWI Wy "UY 0004 LELOOLLL LLLL |2 Sl uy<-uy+zgwul uy‘zewwi gavy
“pguwl Wy Uy 0001 LLLO LOLL LLLL |9 V|iV|V|V uy<-uy+pzwuwi(ixe ubis) uy‘pzwwl aavy
“guIwl Wy Uy 0000 LLLO LLOL LLLL | V|iV|V|V uy<-uy+gwwi(ixa ubis) uy‘gwwl aav
“ZEWWIUY00 LOLLOOLL LLLL]9 | V[V] V|V Uy<-uy+zgwull uy‘zeww Qay
"QLWWI UYO0 LOLL OLOL LLLL | V| V|V|V uy<-Uy+9 L wwi(3xa ubis) uy‘gLwwl aav
“rguWIUY000L00 2 | V| V] V| V uy<-uy+gwui(ixe ubis) uy‘gwuwl aay
ZEWWIUaoo 00LL 00LL LLLL|9 | V| V| V|V uQ<-ug+zgwuil ug'zewwr aav
“'gLWWi ugoo 00LL 0LOL LLLL Y | V| V| V| V ug<-ug+9Lwuwi(ixa” ubis) ugolwwi aavy
“gwwiudolo0lo0|z | V| V| V|V ug<-ug+guwuwi(ixe ubis) ug'sww! gav
—— Py Uy WY 00LL LLLOLLOL LLLLY | V| V| V|V PY<-UY+WY py'Uy'wy aav
Uy WY 000L LLLO LOOL LLLLIE | V| V| V|V UY<-uy+wy uy'wy aav
Uywy }1101000 LLLL|Z | V| V| V|V Uy <-Uy+Wy uy'wy aav
ugwy 1010 L000 LLLL |2 ViV|V|V ug<-ug+wy ug'wy aav
uywaolio Looo LLLL |2 VIiV|V|V uy<-uy+uwqg uy‘wg aav
ugwaottl (L ViV|V|V ug<-ug+wqa ugwa aav| 499Y
........ LLLOOLOL LOOL LLLL |E - -] - [eyoedeleql<-(dg)aulo wew (dS) 4d0a
........ WY Y 0LLO0LOL LLOL LLLL |b - -] - [eyoegeleql<-(1y+wy)sulo wew (wyy) 3doa
..... ZEP - WY 0LLO00LOOLLL LLLL |2 - -] - [eyoeoeleql<-(ZEp+Wy)aulo Wwall (wy'zep) 4doa
..... ¥Zp - "Wy L1L00LOL LOLL LLLL |9 -1 -1 -1 -] Teyoepereql<-(yzp(ixe ubis)+wy)uljo Wwall (wy'yzp) 4d0a
...... 8P WY LLLOOLOL LLOL LLLL |¥ -1 -1 -1 -] [euoepeieql<-(gp(ixa ubis)+wd)auljo waw (wy'gp) 4d0a
- WY 0LLOOLOL LOOL LLLL € St [eyoegeleq]<-(wy)aulp waw (wy) 4d40a| 4d0d
Uy - 0001 OLLO LOOL LLLL € -l -] - UY<-00000000%0 ud 910
00ud 0000 | | -l -] - uQ<-00000000%0 ug ¥T10| ¥19
Uy WY 0001 1100 LOOL LELL |€ IR uy<044xoswy uy'wy NgLx3
Uy Uy 000} 1100 LOOL LLLL [€ -1 -] - Ud<-44X0%uy uy NgLx3
ualo Looo || -1 -1 - - ug<-44x0eua ug ngrx3a|neix3
Uy<-00000044X0Jwy 8s|e’
Uy "Wy 0001 0100 LOOL LLLL |€ o uY<-44X08WH(0=2dq wy)y uy'wy g1x3
UY<-00000044X0[uy os|o’
“uy Uy 0001 0L00 LOOL LLLL |€ R ud<-44x0u¥(0=2dg-uy)H uy g1x3
UQd<-00000044x0luqg 8s[e’
ugoo 1Looo | | R ud<-44xoualo=2dq-ua)y ug g1x3| 91x3
Uy "Wy 000L LOLO LOOL LELL [E 11 -1 - Ud<-4443X0o8Wy ug'wy NHLIX3 |nHLX3
oS |1ZNHOHA
8p0D BUIYB 5000 Bel uonesadQ SlUOWBU dnoio

13S NOILONYLSNI SRS FCO0LNIN

INSTRUCTION SET 351

Chapter4 APPENDIX

ugwaoriooloo iy

~—
-
(=}

HAW<-Wa%{ua yan}ua<-wafuayan

ug‘'wg AId

AId

“TZEWW! WY U L00L LLOLOLLL LLLL {uy"yan}<-ud,zgwwi uy‘zewwi NN
W WY Uy L00) LLOL LOLL LLLL {Uy"HaW}<-Ud, FZWwI(xe_01e2) uy'‘yzwwi 0NN
QWL WY Uy LOOL LLOL LLOL LLLL {uy"yan}<-uy,.gwuwi(ixe 0Joz) uy‘gwwi NN

2z |UVIUv] ¢
. VIVl e
9 VIV]Iélé
¥ VIV|Ié|é
-ZPY “LPY Ud Wy LOLL LLOL LLOL LLLL ¥ V|V|élé {uy'yan}<-uy, Wy Zpy’Lpyud‘wy NI1NIN
“uy "wy L00L LLOL LOOL LLLL |€ V|V|élé {uy'yan}<-uy, Wy uy‘wy NININ
uawa 10100100 Ltz TV VI el ¢ {Ua"ganl<-ua,wa ug'wa ninw | 1NN
“ZeWWl WY Uy L00L OLOL OLLL LLLL |2 VIVl e {uy'yan}<-uy,zswuwi uy‘zewwi NN
"Wl Wy Uy L00L 0LOL LOLLLLLLIG | V| V] é] ¢ {uy"Han}<-ud,Fgwuwi(xe ubis) uy‘powwr NI
WL WY U LOOL 0LOL LLOL LLLL Y | V| V] é] ¢ {uy"dan}<-uy,gwwi(ixa ubis) uy‘gwuwi NN
"ZPY CLPY UY W LOLL OLOL LLOL LLLL |Y VIV]é|é {zpY‘LpY}<-uy, Wy zZpdLpyuy'wy 1NN
Uy WY LO0L 0LOL LOOL LLLLIE | V| V] ¢ & {uy yanl<-uy.wy ud'wy TN 90
uquaootootoo biitlz | VI V] el ¢ {ua'yamwi<-ua,wa ug'wa 1N
“TZEWW WY U 0004 0LOL OLLL LLLL |2 V|IV|V|V UY<-O'MSdI-Zewwi-uy uy‘zeww! 09ns
“pzww] Wy uy 0004 0LOL LOLL LLLL |9 V|V|V|V UuY<-O°'MSdI-pgwwi(1xa ubis)-uy uy‘pzwwl OgNs
guIwl Wy Uy 000) 0LOL LLOL LLLL |¥ V|V|V|V uYy<-0°'MSdI-gwuwi(ixe ubis)-uy uy‘gwuwil 09Ns
- py ud WY 00LL OLOL LLOL LLLL |¥ ViVv|iVv|vV PY<-O'MSdI-Wwy-uy py‘ud‘'wy 04dNsS
Uy "Wy 0001 0LOL LOOL LLLL [€ V|V|V|V UY<-O'MSdI-Wy-uy uy‘wy 0dNsS
uaqwdoool Lo00 LLLL |2 VIV|IV|V ud<-0°'MSd3-wa-ug ug‘wg 2gns | 24dnNs
TZEWW Wy Uy 0004 LOOL OLLL LLLL |2 VIV|V|V Uy <-zewwi-uy uy‘zeww! dns
“pzwiwl Wy uy 000L L00L LOLL LLLL |9 V| V|V|V uy<-pgwuwi(ixe ubis)-uy uy‘pgwwl gns
“rguiwl Wy Uy 0001 LOOL LLOL LLLL |y | V| V| V|V UYy<-gwuwi(ixa ubis)-uy uy‘'gwuwl gns
TZEWWIUYLO LOLL0OLL LLLL |9 ViV| V|V uy<-gewuwl-uy uy‘zeww! 4dns
"ZEWWI Uaoo 00L L 00LL LLLL |9 ViV|iV|V ug<-gewuwi-ug ug'zeww! gns
- Py Uy WY 00LL LOOL LLOL LLLL | | V| V| V|V pY<-wy-uy pdudwy gns
“uy w0004 LOOL LOOL LLLL |€ VIV|IV|V UYd<-wy-uy ud'wy 4dns
UyWy 1100 L000 LLLL |2 VIV|V|V uy<-wy-uy uvy'wy 4dns
uquiy 1000 L000 LLLL |2 VIV|V|V ug<-wy-ug ug'wy 4ans
uywd 0L00 L000 LLLL |2 V|iV|V|V uy<-wg-uy uy'wg 4ans
uqwia 0000 000 LLLL |2 V|iV|V|V ug<-wqg-ug ug'wa gns| 9ns
Zeww wy uy 000L 0001 OLLL LLLL [Z V|iV|V|V UY<-O'MSdI+uy+ggwull uy‘zeww! 5aavy
“pZwwl Wy ud 0001 0001 LOLL LLLL |9 VIV[IV]V UY<-O°'MSdI+ud+yguwui(}xa ubis) Uy yewwil Daav
UL WY U 0004 0001 LLOL LLLL |7 VI V]iVv|V UY<-O'MSdI+ud+8WwWi(}xs ubls) uy'gwwi 9aav
- Py Uy WY 0041 000L LLOL LLLL |b V|V|V|V PH<-O°'MSdI+ud+wy py Uy 'wy DAav
“uy w0004 0001 LOOL LLLL [€ Viv[Vv]Vv Ud<-O'MSdI+ud+wy uy'wy oaav
uqwaooLo Looo LLLL |2 ViVv|iVv]V Ug<-O’MSd3+ua+wg ugw@g oaav|oaay
oS |1ZHNHOHA
8p0o) auIyde 5000 Bely uoneladQ JlUOWBUIN dnouo

13S NOILONYLSNI SARIFS FC0LNIN

INSTRUCTION SET

352

Chapter4 APPENDIX

—-—- Py Uy "Wy LOLL 1000 LLOL LLLL vV|Vv|0]|O0 pY<-uy|wy pyuUd'wy YO
“uy w100k 1000 LOOL LLLL V|Vv|0]|0 uy<-uyfwy uy'wy HO
uQWQ 1000 0100 LLL vivio]o ug<-uglug ugwag yo| 9
TZEWWIO0LL LLLLOOLL LLLL VIV|V|V MSd3 <- M\Sd3 ¥ zewuwl MSd3I‘zewwl ANV
“QLUWI00LL LLLLOLOL LLLL Y | V| V] V]V [0:5LIMSdI<-[0:51IMSdT % 91w MSd'9lwuwl aNV
TZEWW Wy Uy L00L 00000LLL LLLL|E 2| V[V][0 |0 uy<-uygzewul uy‘geww! QaNV
"W Wy Uy 100} 0000 LOLL LLLL|9 | V[V|0 |0 UY<-UyRyzuwi(xe 018z) uy'yzwwi aNy
QWL WY Uy LO0L 0000 LLOL LLLL|Z | V[V[0 |0 Uy <-uypguuwi(}xe 018z) uy‘guwl ANV
Zewwl ugoo 0L LL 00LL LLLL |9 ViVv(i0|O0 ug<-ugygccwuwl ug‘zeww! AanNv
“'QLWWIUAO0 OLLL OLOL LLLL |V ViVv(i0|O0 ug<-uge9lwuwi(ixa 018z) ug‘olwuwil AanNv
“guIWI ugoo OLLL 0004 LLLL |9 vViv|io |0 uQg<-ugwegwuwi(ixe 018z) ug'swwi ANy
---- Py Uy "Wy LOLL 0000 LLOL LLLL [P vV|iVvi|o|0 pH<-uyBWY pyUd'wy ANV
Uy w1001 0000 LOOL LLLLIE ¥ V| V[0 |0 Uy <-uyguy uy'wy anNv
uQqwia 0000 0L00 LLLL |€ V|iV|0 |0 ud<-ugewa ug‘'wag anv| AdNy
TTZEWWl Uy - 000) LOLL OLLL LLLL|Z viv|iv]v MSd3 : Zewuwi-uy uy‘zewwr dnND
“pgwwl Uy - 0004 LOLL LOLLLLLL|[L 9| V| V| V]V MSd3 | pgwwi(3xe ubis)-uy uy'yzwwl diND
“UQWIWI TUY - 000L LOLL LLOL LLLL |y | V| V| V|V MSd3 : gwwi(ixe ubis)-uy uy'swwi diND
“ZEWWIUY0L LOLL O0LL LLLL |9 viv|iv|v MSd3 1 zewwi-uy uy'zeww! diND
“gLwwiuyoL LOLLOLOL LLLL Y | V| V| V|V MSd3 : 9lwwI(Ixe 049Z)-uy uy'grwwl diNo
QU UYUY LLOL |2 viv|v]v MSd3 : gwwi(}xe 0Jaz)-uy uy'swwi dno
“Zewwi udol 00LL 00LL LLLL |9 V|V|V|V MSd3 : Zewwi-ug ug'zewwr diNo
gLwwiudol 00LL 0LOL LLLL |¥ V|V|V|V MSd3 : 9Lwwi(3xe ubis)-ug ug'olwuwr diNo
“Uguiwl uquaolol |Z VI|V|V|V MSd3 : gwwi(ixe ubis)-uQ ug'gwuwl dND
“uy "W 0004 LOLL LOOL LLLL |€ viv|iv]v MSd3 : uy-wy ud'wy diND
uywy LLoL |1 viv|iv]v MSd3 : uy-wy uy'wy diND
uquwy 100} L000 LLLL |2 viv|iv]v MSd3 : wy-ug ug'wy dND
uywdoLol L000 LLLL |2 vViviv|v MSd3 T wag-uy uy'wa dNo
uguwaolol[L | V| V| V]V MSd3 - wa-ug ug'wg dwd| dng
“uy "Wy 0004 00LL LOOL LLLL [€ VIV|IV|V Ud<-p+uy ud ¥ONI
uyoo 1010 |} S uy<-p+uy uy $ONI| YON
“uy w0004 LLOL LOOL LLLL |€ VIiV|IV|V Ud<-|+uy ud ONI
LOUV 0010 |} R uy<-1+uy Uy ONI
00uaoolo |1 ViVv|iVv|V ug<-L+ug ug ONI| ON
uy w100k LOLL LOOL LLLL € [éV]AV] ¢ [10] HAN<-WH%{UEHaNW} ud<-WHAUS AN} ud'wy NAId
uqwiaLLooLoo Lk |2 |eV[eV] & [10] daiN<-Wa%{ua danfud<-waAuaaant ugwa nAia| nAd
“ud "Wy L00L 0041 LOOL LLLL (S [UV[EeV] & |10 JaN<-WH%{Ud AN} Ud<-WdAuS JaINy ugwy Ald| A
oS |1ZNHOHA
8po) auIyoe 5000 Bely uoneladQ JlUOWBUIN dnouo

13S NOILONYLSNI SRS FCO0LNIN

INSTRUCTION SET 353

Chapter4 APPENDIX

(uy)gwew<-[0:21(ualdL)
MSdI:uaediNL[8:1EldNL<-000000%0

uywQ@0o0L 0000 LLLL|Z | V|0 [0] 0 ‘[0:21d N L<~(uy)gwaw (uy)'wg 13sg|13Sd
MSd3 : dNL B swuwi(ixe ubis)
‘[8:1.€]ldN L<-000000%0
- guIWI ZeSqe 0100 0000 0LLL LLLL |2 V|VvV|0]|0 ‘[0:21dnL<-(ZESae)gwsw (zesge)'gwwi 1514
MSd3 : dNL B swuwi(ixe ubis)
‘[8:1.€]dIN1<-000000%0
“gwiwl “9LSGe 0100 000L OLLL LLLL|G | V| V|0 |0 ‘[0:21dIN1<-(915qe(1x8 0J18Z))gWaw (91sqe)'guwwi 1519
MSd3T : dNL B gwuwi(ixe ubis)
‘[8:1€]dIN1L<-000000%0
“eQuIWE 8P UYOL LLLL OLOL LLLL [| V| V|0 |0 ‘[0:21dINL<-(g8p(1xe " UBIs)+uy)gwaw (uy'gp)'gwwi 1519
rzewwl Uy === LOOL OLLLOLLL LLLL |2 ViIVv(i0o|0 MSd3 - Uy B cewuwl uy‘zewuw! 1s19
"Wl Uy - L00L OLLL LOLL LLLL|9 | V[V|0 |0 MSdI: uyRpzwwi(Ixe 018z) uy‘pgwwil 1s19
QW UM == LOOL OLLL LLOL LLLL |b vivio|o MSdI: uyRgWwWI(}xe 0192) uy‘gwwi 1S19
ZewwiudllL oLLl 00LL LLLL |9 V|iV|i0|O0 MSd3 : ug R ccwuwil ug‘zewwi 1s19
QWi uaLL oLLLOLoL LLLL Y | V| V][0 |0 MSdI: ugR9Lwwi(xe 018z) ug‘glwwi 1819
“guIIUALL 0LLL 000L LLLL]E | V]| V|0 |0 MSd3: ug@pgwwi(ixe 0187) uggwwi 1s1g|1isid
uy “wy 100} 1100 LOOL LLLL [€ V|iV|i0|O0 UY <-44444444%0 v Uy uqd 1ON
uaoo LLo00Lo0 LLLL |z | V| V|0 |0 ug <- 44444444x0 v ua ug LON]| 1ON
TZEWWl Wy Uy L00L 0L00OLLL LLLL |2 V| V|0 |0 uy<-udyzewul uy‘zeww! YoX
pZWWL WY Uy L00L 0L00 LOLL LLLL |9 V|IV|0 |0 UY<-udypzuuwi(ixe 019z) uypgwwl HOX
e guiwl Wy Uy L00L 0L00 LLOL LLLL | V|IV|0 |0 UY<-uyygwuwi(ixa 0192) uy'gwuwl HOX
ZEWWIuaoL OLLL 00LL LLLL |9 V|iVv|0 |0 ug<-ugygewul ugzeww! ¥HoX
QLW UdoL OLLL OLOL LLLL |b vVivi0o|o0 ug<-ugyv9lwuwi(ixs 0i1az) ugoLwwr ¥ox
- Py Uy WY LOLL 0100 LLOL LLLL |b ViVv|i0|0 pY<-uydywy pHUd'WY HMOX
Uy "Wy L00L 0L00 LOOL LLLL |€ V|iVv|0 |0 uy<-uyyuy udwy HoxX
uqwaotooolooLhtk [z | V[V[0 |0 ug<-ugvwqa ug'wg ¥ox| "oX
“ZEWWI LOLL LLLLOOLL LLLL |9 V|iV|Vv|V MSd3 <- MSd3 | zgwuwl MSd3Izewwr HO
QLW LOLL LELLOLOL LLLL ¥ ViVv|Vv|V [0:GLIMSd3<-T0:SLIMSdT [9L wuwi MSd9lwwl HO
Trzewwl twy Uy 1001 L000OLLL LLLL |2 vViVvi0o|O0 uy<-udfzewwi uyzewwr ¥O
Tyl Wy Uy L00L 1000 LOLL LLEL |9 viv|io]o0 Uy <-Uy[yguwwi(ixe 019z) udpgwuwl {0
QWML WY U LOOL LO0O LLOL LLLL |F vivio|o0 uy<-uylgwuwi(ixs 0Joz) uy'guwr HO
ZEWwWiuaLooLLL 00LL LLLL (9 vivio|o ug<-uglgcwut ugzewwr HO
QLwwiudLooLLL 0LOL LLLL b ViVv(i0|O0 ud<-ugjolwuwi(ixe 0182) ugoLwuwr HO
TUguWIUALO OLLL 000k LLLL (€ ViVvi0|O0 ug<-uglgwuwi(jxe olJaz) uggwuwr ¥o| dO
oS |1ZHNHOHA
8p0o) auIyde 5000 Bely uoneladQ JlUOWBUIN dnouo

13S NOILONYLSNI SARIFS FC0LNIN

INSTRUCTION SET

354

Chapter4 APPENDIX

“rgwwil 'zesqe 1000 0000 0L EL LLLE

(zesqe)gwaw<-
[0:21(44444444%0v8wii(xe ™ 0182Z))|dINL)
‘MSdI:gwuwi(3xe ubis)gdINL
‘[8:1€]ldINL<-000000%0
‘[0:2]dINL<-(ZEsqe)gwaw

(zgsqe)‘guwi

4104

“Ugwwi gl sqe 1000 000L OLLL LELL

(91sqe(1xe oloz))gwow<-
[0:21((44444444%0v8ww(Ixe 0182))|dINL)
‘MSd3 : gwwi(ixa ubis)edINL
‘[8:1€]1dINL<-000000%0
‘[0:2]dINL<-(91SqE(1x8 018Z))gWaW

(91sqe)‘guiwi

o109

Crgwwil P UYLO LLLL OLOL LELL

(gp(1x@™ ubis)+uy)gWaul<-
[0:21 (4444444 4%0v8wiLI(xe 0182))|dINL)
‘MSd3 : guuwi(ixe ubis)gdINL
‘[8:1€]dL<-000000%0
‘[0:21dINL<-(8p(3x™ ubis)+uy)gwaw

(uy‘gp)‘guiwi

4104

uvywad 100} 0000 LLLL

(uy)gwaw<-
[0:21((44444444%0vua)RdINL)
‘MSdI:uaedinL
‘[8:1€]ldINL<-000000%0
‘[0:2]1dW L<-(uy)gwaw

(uy)‘'wa

4104

471049

Tgwiwil TZesqe 0000 0000 0L LV LELL

(zesqe)gwew<-
[0:2](8wwi(1xa~018Z)|dINL)
‘MSdI:gwuwi(ixe” ubis)gdINL
‘[8:1€]dINL<-000000%0
‘[0:2]1dW1<-(Zgsqe)gwaw

(zesqe)‘guiwi

13S9

“rguwlg1sqe 0000 0001 OLLL LLLL

AO —‘wnmme O._vavwEmEA-
[0:2](wwi(3xe~ 018Z)|dINL)
‘MSd3 : gwwi(ixa” ubis)edINL
‘[8:1€]ldNL<-000000%0
‘[0:2]dINL<-(91SqE(1x8 018Z))gWaW

(91sqe)‘guiwi

13s9

Crgwwl gP UY00 LLLL OLOL LELL

vio (0|0

»wbﬁxw CU_mv+c<vwE®EA-
[0:A(gw(ixe 018Z)|dINL)
‘MSd3 : gwwi(ixa ubis)edINL
‘[8:1€]dINL<-000000%0
‘[0:21dW.L<-(gp(1xa ubis)+uy)gwew

(uy‘gp)‘guiwi

13s9

13s9

8apoD auIyoe

o713
Se)

4ZHNHOHA

be|4

uonesado

OlUOWBU

dnous

13S NOILONYLSNI SRS FCO0LNIN

INSTRUCTION SET 355

Chapter4 APPENDIX

- "PY UM "WH 10LL LOLO LLOL LLLL

UV

pawlopad jou si uonjesado Jiys as|e
pY<-(1xe™0192)((41000000X0BWYH)<<UY)
‘0'MSd3<-0lud(0=i(41000000X08WH)) I

Py uy'wy

s

“uy "wy 100t LOLO LOOL bLLLE

UV

pawopad jou si uoiiesado Yiys as|o
uy<-(1xo” 0192)((41000000X0BWY)<<UY)
‘0'MSd3<-0lud(0=i(41000000X08WH)) I

uy‘wy

oS

ugwdaoloLoLoo il

UV

pawJopad jou s| uonesado Yiys as|o
uQ<-(1xe~0182)((41.000000X08WA)<<uUq)
‘O"MSd3<-[0lua‘(0=i(41000000x08WA))4I

ug‘wq

oS

ST

TTZEWWI WY Uy 1001 00LOOLLL LLLL

UV

pawJopad jou s uonesado Yiys as|o

ud<-(e ubis)((41000000X0BZEWWI)<<UY)
‘0'MSd3<-[oluy
‘(0=i(41000000x02ZEWWI)) |

uy‘zgwuwl

dsv

Tpguiwl Wy Uy 1001 00LO LOLL LELL

UV

pawlopad jou si uonesado Jiys as|e
uy<-(1xe ubis)((41000000X0FZWWI)<<UY)
‘O'MSd3<-[oluy
‘(0=i(41.000000%09FzWwWI))d|

uy‘pguul

Sy

gl U LOOL 0010 LLOL LELLE

UV

pawuJoyad jou s| uonesado YIys oas|e
‘Ud<-(1xe uBIs)((41000000X0BSWILLY<<UY)
‘0'MSd3<-[oluy’
(0=i(41000000x0g8WWI)) |

Uy g

dSY

“gwwiudol 00LL 000k LELL

UV

pawuJoyiad jou s| uojjesado Piys as|e
‘ug<-(1xe ubis)((41.000000%0g8LIL<<U)
‘O'MSd3<-olua
‘(0=i(41.000000%088WWI))H|

ug‘gwiw

dSY

- Py “UY WY 101} 00L0 LLOL LLLL

Uv

pawJoyiad jou s| uoijesado Yiys as|d
pY<-(1xe” ubis)((41000000X0WY)<<UY)
‘O'MSdI<[0lud‘(0=i(41000000x0WY))|

pyuy‘wy

ySY

“uy "wy 1L00L 0010 LOOL LLLIE

UV

pawuJoyiad jou S| uoiesado UIYs os[e
uY<-(1xe~ ubis)((41000000X0WY)<<UY)
‘O"MSd3<-[0lud(0=i(41000000X0BWY))|

uy‘wy

Sy

ugqwaiioLoLoo Ll

\%

\

UV

pawJoyiad jou s| uofesado JIys as[e
uQ<-(1xe~ ubis)((41000000x0RWA)<<UA)
‘O"MSd3<-[0lua‘(o=i(41000000x0WA))4I

ug‘wqg

dsY

sy

apoD aulyoep

o713
Se)

4ZHNHOHA

be|4

uonesado

OlUOWBU

dnouo

13S NOILONYLSNI SARIFS FC0LNIN

INSTRUCTION SET

356

Chapter4 APPENDIX

udioiolo

ud<-g>>udg

uda

45\

1Sy

Tgewwl "Wy Uy 100L OLLOOLLL LLLL

pawJopad jou S| uopesado JYs g=wuwi
‘UY<-((41.0000X0RZEWWI)>>UY)
‘(0=i(410000x08ZEWW1)) 4|

uy‘zewuwl

1SV

Tyl "Wy Uy 100L OLLO LOLL LLLL

paw.opad jou si uonesado Jiys g=wwi
‘Ud<-((410000X08 FZWWI)>>UY)
‘(0=i(410000X0 Fgww1)) |

Uy pguwl

SV

TTgwWIE W U LO0LOLLO LIOL LELL

paw.opad jou si uoiesado Jiys g=wwi
‘UY<-((41.0000X038WWI)>>UY)
‘(0=i(410000x028WwW1)) |

uy‘ gl

SY

“Tgwwiiudoo 00kl 000k LELL

paw.opad jou si uoiesado Yiys g=ww
‘ug<-((41.0000x08gWWI)>>uq)
‘(0=i(41.0000x028WWI)) |

uQ‘gwiwl

SY

“mUPY U Wi LOLLOLLOLLOL LLLL

paw.opad jou si uoiesado Yiys as|@
pY<-((410000X08WY)>>Uy)
‘(0=i(410000%08WY)) I

Py uy‘wy

SV

Uy "Wy 100LOLLO LOOL LLLL

paw.opad jou s uonesado Jiys as|o
uy<~((41.0000x08WY)>>uy)
‘(0=i(410000%08W¥)) I

uywy

SV

uawda ool 0Lo0 LELE

paw.opad jou si uonesado Jiys as|o
ua<-((410000x08Wa)>>uq)
‘(0=i(410000x0%WAa))dI

uq‘wq

SY

sy

TTEWWI WY Uy 100L LOLOOLLL LLEL

paw.opad jou si uonesado Jiys as|o
‘Ud<-(1xe0182)((41.000000X0BZEWLLI)<<U¥)
‘O'MSd3<-[oluy
‘(0=i(41.000000x0®ZEWWI))d]|

uy‘zewuwl

oS

Tpgul Wiy Uy 100k LOLO LOLL LLLL

pawJopad jou S| uoljesado Jys as|e
‘Uy<-{(1xe" 0182)((41.000000X0BFgWl)<<U])
‘0'MSd3<-[oluy
‘(0=i(41.000000x0%®FgWwI))d|

uy‘yguwl

HST

gl W Uy LO0L LOLO LLOL LELL

_umE._otma Jou sl co_#m._mao Hliys ssje
‘uy<-(1xe 0182)((41000000X0PWWI)<<UY)
‘0°'MSd3<-[oluy
‘(0=i(41000000x08WWI)) 4|

uy‘giwl

oS

rguwiuaglo ookl 000k LELL

\%

V UV

1é

pawuopad jou S| uonelado HJIys ss|e
‘ug<-(xe 0182)((41.000000X0g8UWILI)<<U()
‘0'MSd3<-[olua
‘(0=i(41.000000x0B8WWI)) 4|

uQ‘gwiwl

oS

HST

8apoD auIyoe

o713
Se)

4ZHNHOHA

be|4

uonesado

OlUOWBU

dnous

13S NOILONYLSNI SRS FCO0LNIN

INSTRUCTION SET 357

Chapter4 APPENDIX

...... 8P0LOL 00}L |2 ol e el Ddu<-(gp(1xe™ ubis))+0d [ege] vHd
0dU<-9ZIS9p0D+Id 9Ss|°
...... 8P LLOLOLLL 00Ok LELL |E -l -] ‘0du<-(gp(ixe~ ubis))+0d‘(N)4I loge| SNg
DdU<-8Z1S8p0)+)d 8s|e
...... 8P0LOLOLLL 00Ok LELL |E -l -] ‘0du<-(gp(ixe~ ubis))+0d‘(N~)4I loge| ONg
DdU<-8Z1S8p0)+)d 8s|e
...... 8P LOOL OLLL 000k LELL |E -l - -] - ‘0du<~(gp(ixe~ ubis))+0d‘(A)I |loge|] SAg
DdU<-8Z1S8p0)+)d 8S|e
...... 8P 000L OLLL 000L LLLL |E -l - -] - ‘0du<-(gp(ixe~ ubIs))+0d‘(A~)dI legel OAd
0dU<-9ZISOp0D+Id 9Ss|°
...... 8P 00L000LL |2 -l -] - - ‘0du<-(gp(1xe~ubis))+0d (D)4l leqe] S04
0dU<-8Z1S8p0J+Jd
...... 8P LLLO00LL |2 -| -| -] -] ®sl®@ ‘Odu<~(gp(1xa ubis))+0d'(z|0)dl leqe] s1g
0dU<-9ZISOp0D+)d 9S|o
...... 8P0LL000}L |2 -l - -] - ‘0du<-(gp(ixe ubis))+0d‘(0~)4I lege] 009
DdU<-8Z1S8p0J+)d 8s|e
...... 8P L0L000}L |2 -l -] - - ‘0du<-(gp(ixe~ ubis))+0d‘((zI0)~)4l loge| |Hg
DdU<-821S8p0J+Jd
...... 8P 0000 0011 |2 | -1 -| -] ®s® ‘Odu<-(gp(xe~ ubis))+0d (AvN)4I logel 174
DdU<-8Z1S8p0J+Jd oS8
...... 8P LL0000}L |2 -] - - ‘0du<-(gp(Ixe ubis))+od‘((AvN)IZ2)4I legqel 319
DdUu<-9ZI1S8p0D+Dd 9SI9
...... 8P 0L0000LL |2 - - - ‘0du<-(gp(ixe ubis))+0d‘((AvN)~)dI leqe] 3Iog
0dU<-9ZISOp0D+)d 9s|°
‘0du<-(gp(1xe~ ubis))+0d
...... 8P 1000 00L} |2 o e (((AVN)[2)~)41 leqe| 199
0dU<-9ZISOp0D+0d 9s|°
‘0du<-(gp(Ixe~ ubis))+0d
...... 8P LOOL 00}1 |2 o I e ‘(paJes|Obe|4z10L=iZ) I loge| 3N
5dU<-9ZI1S8p0D)+Dd oS|e
‘Odu<-(gp(ixe™ ubis))+0d
...... 8P 000L 0011 |Z e ‘(Jogbe|qzi01=7)I logqe| ©3g| 9°d
“Uyg "Wy 100l 00} LOOL LLLL € v] v] v]o [{lor1elud D mSdIr<10 MSdI 0L €Jud; uyd 10Y
udoo 000t 0L00 LLtk |2 | V| V] V|0 [0 1€lUd D MSdII<{D MSd3'T0: LElua;) ug 10d| 104
“ud "Wy 1001 0004 L0OL LLbL|e | V]| V| V[0 [{O"MSdTTo Ielug)<-{[0 T Elug D' MSd3} ud d0d
uaL0000L0L00 bkt |2 | V| V| V] 0 [{O°MSaI o teluai<Io- eluao mSd3ar ug do0d| dod
“udwd LooL Lo Look LLLL e [V[V é] e Ud<-g>>uy Ug ¢1SV |2 1SV
oS |1ZHNHOHA
apo) aulyoepn 5p00) Belq uonesado JIUOWBUN dnouo

13S NOILONYLSNI SARIFS FC0LNIN

INSTRUCTION SET

358

Chapter4 APPENDIX

HAN<-82188p0D+0d(dS)<-821S8p0I+0d (0d‘zep) ST1IvD
..... ZEPLLLLLLLLOOLL LLLL|9 ol Bl Bl ‘0du<-Zep+0d
HANW<-9ZIS8p0I+0d (dS)<-0ZIS8p0D+Id
..... OLPLLLLLLLLOLOL LLLL [P ot il el ‘0du<-(91p(Ixe” ubis))+0d (0d‘9Lp) STIVO
HAN<-8ZIS8p0D+Id
uvoo LLLL 0000 bbbk |z | -] -] -] -| ‘(dS)zewsw<-8z159p0D+0d Ddu<-uy (uy) S1Ivo B TIVO
dS<-gwuwi(ixa 019z)-4S
‘(1-dS)Buimoy|o} Alowsw ssaippe JamoT
A-wmwh >Q Um_h_omnw ssalppe w_Q_:D_\/_
“HAW<-9ZIS8p0D+0d
g rsBalzep LoLL LOLL |2 o e el (dS)<-821I58p00+0d Ddu<-ZEP+Id | gwiwil'sbar(Dd‘zep) 1IvO
dS<-8wuwi(}xa 018z)-dS
‘(L-dS)Buimojjoy Alowisw ssalppe Jamo
<-sbBai Aq payioads ssaippe aidnyny
HaN<-921IS9p0D+0d
“guiwy sBa1 " 9Lp LOLL 00L L |G -1 - -] - | (dS)<-ez188p0D+0d Ddu<-9Lp(xe Ubis)+Od | gwwi'sBar(dd'oLp) TIvO | 11VO
..... ZEPOOLL LOLL |G s 0du<-Zep+0d (Odzep)iegel dNIr
..... 9LP00LL 00LL |€ -l -] - - 0du<-(91p(1xe™ ubis))+0d (0d9Lp)iege] dWNIr
UYLO LLLL 0000 LLLL |2 -1 -] -] - Jdu<-uy (uy) dir| diar
LLOL LOLL |1 i Jayng dooj }es g113S [g113s
0LOL LOLL L -l - - - Odu<-v-4v1 vdT
00L0 LOLL |1 -l - - - OdU<-1+0d 889" 0du<-#-4v1(D)dI SO
LLLOLOLL |L -1 -1 -1 -] Odu<-1+0d 8sig*0du<-7-dv1(Z[D)4I ST
OLLOLOLL |1 -t 0dU<-1+0d 8s[3*0du<-#-"vT1(0~)4I 001
OdU<-L+0d °s|o
LOLO LOLL |1 o Il e ‘0du<--4v1((Z[0)~)4I IHT
0000 LOLL |1 -1 -1 -1 -] Odu<-1+0d @sie0du<--4v1(AvN)4I 171
Odu<-1+0d 8s|®
1100 LOLL |1 i ‘0du<-#-4v1'((AvN)IZ)4l 371
Odu<-1+0d 8s|®
0L00 LOLL |1 s e ‘Odu<--8vT1((AvN)~) 4l 397
Odu<-1+0d 8s|e
1000 LOLL |1 o i e “Odu<--4v1((AvN)IZ2)~)4I 197
LOOL LOLL |1 -1 - - OdU<-1+0d 9SI9"0du<-v-dvT1(Z~)4l AN
000} LOLL |1 -T-1 -1 - OdU<-1+0d 9S[e 0dU<-7-gv1(2)dl O3T| o297
oS |1ZNHOHA
8po) auIyoe 5000 Bely uoneladQ JlUOWBUIN dnouo

13S NOILONYLSNI SRS FCO0LNIN

INSTRUCTION SET 359

Chapter4 APPENDIX

U "wH 110L L00L LOOL LILL

uy<-
(l0:GL]ud(xe 0182)),([0:G L lwy(1xe 0182))
‘OYdN<-

([o1:Lglud(xe 0182)),([9}: L glwy(ixe 0182))

uy‘wy NHINING

NHINNG

e zeww -

Wy "ud 1101 000L OLLL LLLL

uy<-
([0:GLlud(ixe ubs)),[0:G L Izewwi(ixe ™ ubis))
‘Odan<-

([91:1€lud(xeubis)),([91: | Elzgwiwi(xeubis)

uy‘zewuwl H1NNA

¢PY "LPY

Uud "Wy L L1 000L LLOL LELL

Zud<-
([0:51luy(xe ™ ubis)),[0:G L lwy(ixe ubis))
‘LpY<-

(Io):1€lud(xeubis)),([9L: L glwy(xeubis)

ZPY'LpY Uy Wy
H1NNA

Uy "wH 1101 000k LOOL LLLE

uy<-
([l0:G1]ud(ixe™ ubis)),[0:G L]w(ixe™ ubis))
‘OYaN<-

([91:Lglud(ixe ubis)) (91 :Lglwy(xe ubls)

uy‘wy HINNG

HINNA

LLLLLLL

2du<-{800000%0'[¥Z:1€l49 1} dS<-8-dS
(8-dS)zswaw<-MSd3'(1-dS)zgweaw<-0d

Id

ywwiQLlLl 0000 LLLL

Ddu<-{(gxywwi|00£00%0) [vz: L elyal}
‘dS<-8-dS
(p-dS)zZeWaw<-pSd3 (dS)zswaw<-0d

pwwl TIVOSAS

TVOSAS

1101 00LL

0du<-9Z1§8p0)+Jd

dON

dON

OLLLLLLLO000 LLLL

(dS)zeWwaW<-9zIS8p00+0d
‘0du<-{010000%0'[¥Z: LEldaL}

dvdl

dvdl

LOLL LLLL 0000 LLLL

dS<-8+dS
‘DdU<-(p+dS)ZEWBW MSdT<-(dS)zewaw

114

[NR<|

00LL LLLL 0000 LLLL

Ddu<-(dS)zgwaw

S13d

S13d

gl sBalLLL LOLL

dS<-gwuwi(1xa 019z)+dS
‘sbas Aq panloads siaisibal ajdiynpy
k-(1-4S)Buimoljo} Alowaw ssalppe JomoT
‘(Dd uononysul 1xeu)odu<-Jain

4134

4134

gl sBar LLLL LOLL

dS<-gwuwi(1xa 019z)+dS
‘sbas Aq payioads sisysibas aidiyiniy
-(L-dS)Buimoljo) Alowsw ssalppe JamoT]
‘Odu<-(gwwi(1xe 0182)+dS)

134

134

apoD aulyoep

o713
Se)

4ZHNHOHA

be|4

uonesado

OlUOWBU

dnouo

13S NOILONYLSNI SARIFS FC0LNIN

INSTRUCTION SET

360

Chapter4 APPENDIX

g

wwiuyd 1101 0000 L1OL LLLL

<

{THOW HYON}
<-{THOW ' HYOW}+(uY,.gwuwi(3xe ubis))

uy'gwwl JviN

..... Py LPY

UYWL LLLE 0000 LLOL bLLL

{zpy‘LpY}<-{ZpY’ L Py} +(uy,Wwy)

P LPY'UY' WY OVIN

Uy "Wy 110l 0000 LOOL LLLL

o <

{19 HYOW}<-{THOW HYDN}+(uy W)

uy'wy OV

OVIN

“zeww

“Ud - LIOL LLLOOLLL LLLL

B THOW<-THON+
(lo:51]ud(xe”0102),[0:G L Izew(xe 0182))+
([9L:1€lud(xe 0182),[91: L glzcwwi(xe 0ioz))

uy‘zewwr NHOVING

ey

U "W LLLL LU0 LIOL bLLL

pY<-pY+
([0:51]ud(ixe 0102),[0:G L JwH(ixe 0102))+
([9L:1Lelud(xe 0102),[9L 1L Elwy(ixe 0182))

pPHUy‘'wy NHOVING

ugd "wy 110k LELO LOOL bILL

THON<-THON+
(l0:5uxi(xe0102),[0:G | Jurd(xe™ 0102))+
([9):1€luy(xe0102),[91:LElwy (X 0102))

uy'wy NHOVIAG

NHOVIAG

~zeww

Ud - LI0LOLIOOLLL LLLL

THOW<-THON+
(lo:s1lud(xe ubis),[0:GLlzcwwi(xe ubis))+
(loL:1Lelud(xe ubis), o)L Elzswwi(xe ubis))

uy‘zewwr HOVING

ey

U4 "W LLLLOLIOLIOL LLLL

PY<-PY+
(l0:51Llud(xeubis),[0:G1]wy(xe ubis))+
([oL:1€lud(ixe ubis),[9L:LElwy(ixe™ ubIS))

pYUY‘WY HOVING

TUud "Wy 110V OLLO LOOL bLLL

THON<-TION+
(l0:sLlud(xe ubis),[0:G1]wy(xe ubis))+
([oL:1lud(xe ubis),[9L:Lglwy(ixe ubIs))

uy‘wy HOVING

HOVING

“zeww|

Wy "ud 1101 LOOLOLLL LLLL

uy<-
([0:51lud(ixe 0182)),([0:S L lzcwwi(ixe0182))

‘OYadn<-
([oL:LElud(xe 01s2)),([9L: LElzeWwI(xe 0IBZ))

uyzewwr NHINNG

cPd LPY ¢

Ud "W LLLL LOOL LIOL LELL

Zpd<-
([0:51]ud(1xe 0182)),([0:5 1 Jwy(1xe~ 018Z))

‘LpY<-
([oL:1€lud(ixe 0182))([91: L Elwy(1xe ™ 0182Z))

Zpdlpyud'wy NHINNG

NHI1NNG

8apoD auIyoe

o713
Se)

4ZHNHOHA

be|4

uonesado

OlUOWBU

dnous

13S NOILONYLSNI SRS FCO0LNIN

INSTRUCTION SET 361

Chapter4 APPENDIX

PY<-pPYH+
- "pY Uy WY LLLL 0L00 LLOL LLLL |# -| -1 -| v | (([o:2]ud(ixe™ ubis)),([0: Z]wy(1xe™ ubis))) pyuy‘wy goyw BOVIA
THOW<-THON+
Uy "Wy 1101 0100 LOOL LLLL|E - -1 -] - [([o:2]ud(ixe” ubis)),([0: Z]wy(1xe” ubis))) uy‘'wy govIN
{190oW HY oW <-{THON HYDW}+(([0:G 1]
rZewwl Uy — L10L LOLO OLLL LLLL |/ -l - -] - uy(1xe 0182)),([0:GL]zcwwi)) uy‘zeww NHOVYIN
{THOW HYOW}<-{THOIN HYDIN}+
"Wl Uy - 1101 L0LO LOLL LLLL |9 -| -| -| dlo:GLlud(xe 0182)),([0:G1Llpzwwi(1xe 0182))) uy‘pgwwl NHOVIN
{T4OW HYOW}<-{THON HYDN}+
gl Uy - 1101 L0L0 LLOL LLLL | b - -1 -] {(lo:61luy(xe 0182)),([0:GLIgWwwi(1xe 018Z))) uy‘'swuwl NHOVIN
{zpdLpY}<-{zPY L PY}+
"ZPY "LPY U WY LLLL LOLO LLOL bLLL |f - -1 -] v (([0:GLlud(xe 0182)),([0:G L]wy(xe 0182))) | zpy LpYUY‘'WY NHOVIN
{T9OW HIOWI<-{THOIN HYDON}H+ NHOVI
Uy "Wy LLOL LOLO LOOL LLLL |€ - -1 -] -((o:gLluy(xe 0182)).([0:5 1wy (xe 0182))) uy‘'wy NHOVIN
{ToW HIOWI<-{THoON HEOW}+(([0:G L]
“ZEWW! UY —— L10L 00LOOLLL LLLL |2 -l - -] - uy(ixe ubis)).([0:G11zewur)) uyd‘ZEwwl HOVIN
{THIOW HHO W} <-{THOIN' HIDO N} +
"Wl Uy - LLOL 0010 LOLL LLLL |9 - -1 -] €logLlud(xe ubis)).([0:GL]ygwwi(ixe ubis))) uy‘yzwwl HOVIA
{THION HHO W <-{THOIN' HIDO N} +
gl Uy - 1101 0010 LLOL LLLL | -| - | -| Alo:61lud(ixa”ubis)),([0:G L 1gwwi(ixe~ ubis))) uy‘'swwi HOVIN
{zpd L pyl<-{zPy L PY}+
"ZPY "LPY U WY LLLL 00LO LLOL LLLL |f - -1 -] v [(o:g1lud(xaubis)),([0:G5L]wy(xe ubis))) | zpy‘Lpy‘ud‘wy HOVIN
TIDOWHIOWI<-TTIDIN'HID NS+
“uy Wy 110k 0010 LOOL LLLL | -| -] -] - [([o:S1lud(ixe " ubis)),([0:G L]wy(1xe ™ ubis))) uy‘wy HOvIN|HOVIN
“ZEWWl Uy - LL0L LO00 OLLL LLLL[Z -1 -1 -1 - T O HYON<{ THOW HIDWH+UH, g g uy‘zeww! NOVIN
{T9OWHED N}
" pgwiw) uy == 1101 1000 LOLL LLLL |9 - -] -] - | < TTHOW HYDW Uy, Fzwwi(ixe 0182)) uy‘pzwwl NOVYN
{T9OW'HIDINY
QWL Uy - LLOL LO0O LLOL LLLL |# -1 -1 -] -] < {T9OW HYDO W+ (uY.gwwi(3xe 018Z)) uyg‘gwwi NOVIA
ZPY 1P U W LLLL LO00 LLOL LLLL | -1 -1 -V 2P L PHi<-{ZPH L PH+(UH W) | zpy Ipdud'wy NOVIA
“uy "Wy LL0L 1000 LOOL LLLL [€ -1 -1 -1 -1 TTHOWHHOWI<-{THOIN HHIDIN+(ud WwiH) ug'wy NOVA [NOVIN
TZewwl Uy - 1101 0000 0LLL LLLL |2 -1 -1 -1 -] TTHOWHEONWI<{TIOIN HE DN+ US, 2 Ewidl) uy‘zeww! OV
{TIDIN'HIDINY
“pgwiw! Uy - 1101 0000 LOLL LLLL |9 - -1 -] - [< {THOW HYOWH (U PZwwi(1xe ubis)) uy‘yzwwl OV | OVIN
oS |1ZHNHOHA
apo) auIyoe b00r) Beiq uonesado OIUOWBU dno.g

13S NOILONYLSNI SARIFS FC0LNIN

INSTRUCTION SET

362

Chapter4 APPENDIX

=Py U WY LLLL LLLL LLOL LLLL | Y & &0 ¢ abed ,HOS4d, 99S pyuy‘wy HOSY
“ud WY LLOL LLLLLOOL LLLL]E [& & L/0] & abed ,HOS4. 89S uy‘wy HOsg [HOSE
QI UM - LLOL LLOL LLOL LLLL Y [& | & [O |L/0 ebed ,31SON. @9S uy‘guwil JISON
“uy wy 1oL LLoL Look Lkt le | e el oo abed ,31SDN. 993 uy‘'wy 31SOW FLSON
Uy<-‘Wy 9s[e‘Uuy<-00000844%X0
uay000008d4X0=>Wwy)}! 8s|e
........ UMWY LLLLOLOL LLOL LLLL Y | V| V| & | & | ‘Ud<-d444d442X0 usy(d4444/X0=<w)H UY‘'WY ¥ZLVS |PCLVS
U¥<-'Wy 8sje‘uy<-00084444%0
uay(00084444x0=>wy)}l 8s|e
“uM Wy LLOL 0LOL LOOL LLLL|E | V[V | & e ‘UY<-444/X0 usy)(444/X0=<w¥)}l Uy‘wy9LIVS |9 LVS
[8:51LJuy<-[0:2JwyTo: 2lud<-[g:G 1wy
“uy "Wy 1L0L LOLL LOOL LLLL € -l -] - vz 1elud<ol:czlwy o) czlud<-lpz: L glwy uy‘'wy HdVMS HAYMS
[Pz 1elud<-[o:Z]wy oL :gzlud<-[g:G 1 Twy
“uy "Wy 1101 00LL LOOL LLLL |€ -l -] - ‘[g:g1luyg<-9L:ce]wy[0:]ud<-[vz: L Elwy Uy Wy dVMS |[dVMS
UM WY LLOLOLLL LOOL LLLL | 1= -1 -] Townelud<-ogLlwyToigLlud<-[olr gy ud'wy MHMS [MHMS
TION<-THON+
e Uy = L10L LLO0OLLL LLLL |2 - - | - -(o:2lud(ixe0182)),([0: Llzs wwi(1xe 0i8Z))) uy‘zewwr NGOVIN
TION<-TION+
Wil Uy === LL0L 1100 LOLL LLLL |9 -1 - -| -(o:2lud(ixe 0182)),([0: L]ygwuwi(ixe 0lsz))) uy‘yzwwl NgovIiN
THON<-TION+
“eguiwl Uy === LL0L 1100 LLOL LLLL ¥ -1 - -] - [([o:2]ud(xe 0182)).([0:2]gWwi(1xe™ 0182))) uy‘gwwi NgOVIN
PY<-PY+
=y Uy W LLLL LL00 LLOL LLLL | b -1 - -] Vv [(([0:2]ud(ixe~ 0182)),([0:L]wy(1xe~ 0182))) py‘uy‘'wy NgGOvIN
TION<-TION+
“uy WY L1L0L 1100 LOOL LiLL |€ - -1 -] - [(([0:2]ud(ixe 0482)),([0: Llwy(1xe~ 0i82Z))) uy‘wy NgoOvw NEOVIN
TION<-TION+
“rZeWW! Uy = LL0L 000 OLLL LLLL |2 -1 -1 -] - (([o:2dud(xeubis)).([0:lzewwi(ixe ubis))) uy‘zewwi govin
TION<-TION+
“pgwwl Uy = 110} 0L00 LOLL LLLL |9 -1 -1 -] - (([o:2dud(xeubis)).([0:Zlyzwwi(ixe ubis))) uy‘pgwwi gOvIN
TION<-TION+
“rgUIWL UYL LOL 0L00 Lo LLLL [P | - | - | - | - [(([0:2lud(ixe ubis)).([0: Z]gwwi(1xe” ubis))) uy‘gwwi goy [EOVIA
oS |1ZNHOHA
apoD aulyoey 5000 belq uonesadQ OIUOWBUIN dnouo

13S NOILONYLSNI SRS FCO0LNIN

INSTRUCTION SET 363

Chapter4 APPENDIX

pueisado pig:z. yuwl
pueisado is}:| ywwl

"Zuy Wy LUy LWy L000 0004 LLLO LLLL -l -] - - ZUH<-ZWY<<ZUY YIM[MST: LWy-Luy]| ZudZwy Luy LWy ¥SY dND
"ZUY W LUY LWy L1000 LLLO LLLO LELL -1 -1 -] - Zuy<-pwwi(ixe ubis) UIMIMSdT:Lwy-Luy]l zuy‘puwr Luy Lwy AOW dIND
"Zuy ZWy LUy LWy L000 OLLO LLLO LLLL -1 -1 -] - Zud<-zwy YIM[MSdT: Lwy-Luy]] zuyzwy Luy iwy AOW dIND

‘cuy puwl

LUY LW 1000 LLOO LLLO LELL

Zuy<-pwwi(ixe ubis)-zuy YIM[MSI: L Wy-Luy]

guy puwruy'Luy @ns dino

"Zuy ZWy LUy LWy L1000 0L00 LLLO LLLL -1 -1 -] - Zud<-zwy-zuy UIMIMSdI:Lwy-Luy]l zuyzwy uywy ans dao
"ZUY Wl LUy LWy 1000 1000 LLLO LELL -1 -1 -] - Zud<-zuy+pwwi(xe ubis) Yum[mMSdI: L wy-Luy]| zuy'pwwruyiuy aavy dno
"Zuy "Wy LUy LWy 1000 0000 LLLO LLLL -1 -1 -] - ZUY<-ZUY+ZWy YIM[MSI L WY-LuY][zudzwyuyiwy aavy dno

‘cuy pwwl

UYWL 00L0 LOLL LLLO LLLLE

U<~z PUWI(XS 018Z)>>zuy UHM[| U <-| U+, pWwi(3xe” ubis)]

Uy W’ | uy Wl 1Sy aay

‘cuy ‘cwy

Lue ywwio0L000LE LELO LLEL

ZU<-ZWY>>Zuy UIM[| U <-Luyd+pwwi(ixe ubis)]

guy'quy' LUy ywwl 1Sy aay

"ZUy !

UYWL 00L0 LLOL LLLO LLLE

ZUd<-z, pWwI(Ixa 0J4aZ)<<uy Yum[Luy<-Luy+, pwwi(ixa ubis)

Uy P LU Pl ¥S1 aav

‘cuy ‘cwy

Lue ywwio0L00LOL LELO LLEL

ZUY<-ZWH<<zUY YIm[Luy<-Luyg+pwwi(ixe ubl

U ZWy' LUy il ¥ST aay

"ZUy !

LUY Wi 00L0 LOOL LLLO LLLE

QU WL U Wl ¥SY aay

‘cuy ‘cwy

‘Lud ywwi00L0 000k LELO LLEL

S
U<z pWWI(IXa 019Z)<<zuy YIIM[| UY<-LUY+, puwi(1xa ubis
ZUY<-ZWy<<zUY Yimjuy<-Lug+ywwi(ixe ubls

U ZWY' LUy il ¥SY aav

‘cuy puwl

LU pWwt 0L LLLO LLLO LLLL

]
)]
)]
)]
)]

U<z pwwi(3xe” ubls) yum[juy<-Luy+, ywwi(ixe ubis

Uy P iy ywwl AOW- aav

NIBRIRIRIRIRIRIRIR IR IR IR IR IR IR IR AR IR IR IR IR IR IR AR AR AR AR AR A AR AR A AR A

"ZUY gWy LUy pWWig0k00LL0 LLLO LELE -1-1-1 - Zud<-zwy YyIm[uy<-Luy+pwwi(ixe ubis)]| zuyzwy'uyyww AOW aav
Uy Wy LUy ywwi00L0 LOLO LLLO LELL V [V [V |V | MSdT:z, pwwi(3xe ubis)-zuy yimfjuy<-Luy+, pwwi(ixa ubis)] zuypwwrjudyww N aavy
U ZWy LUy Wwi00L0 00L0 LLLO LLLL vVIvi]v]v MSdI:zwWy-guy Uim[jud<-juy+pwwi(ixa ubis)]| zudzwy udyww JND aavy
U Pl LUy pWwio0L0 LL0O0 LLO LLLL -] -] -] cud<zpwwi(xe ubls)-zuy UNM[LUuY<- LU+, pWwi(}xd ubis)]| zudpwwriuyyww gns aay
Uy ZWy LUy yWwi 0010 0400 LLLO LELL -1 -1 -1 - U <-gwWy-zuy yumjuy<-jud+pwwi(ixa ubis)] zudzwy ludywwl gns aay
"Zud Pl LUy $Wwi 0010 L000 FLLO LLLL -1 -1 -1 - Uy <-gud+z pwwi(ixa ublis) yimlpuy<-Luy+, pwwi(ixe ubis)]| zuyHuwruyyww aay aay
Uy Wy LUy yWwi 0010 0000 LELO LLLE -1 -1-1T- ZuY<-guyd+zwy UMl ud<-Luy+pwwi(ixe ubis)]| zuyzwyudyw aay aavy
ZUY pWwi LUy LWy 0000 LOLE LELO LLLE -1 -1-1T- ZUY<-yWWI(X8 018Z)>>zuy YIM[LUY<- LU+ | W] Uy puwr LUy’ w ISY aav
Zud Wiy LUy LW 0000 004 LELO LLLL -1 -1 -1+~ ZUY<-gWy>>zuy YIM[Lut<-|uy+jwy] udzwy Luy LWy 1Sy aavy
ZUd pWWi LUy T LWwe 0000 FLOL LELO FELL -1 -1 -1 - ZUY<-pwWI(IXd 019Z)<<gUY YUM[|UYH<- U+ W] U P Uy LWy ¥S1 aav
ZUY 2wy Uy LWy 0000 040 LLLO LLLL -T-1T-1- ZUH<-ZWY<<guy UIM[JUY<-|Uud+] Wwy] gudzwy LUy lwy ¥ST aavy
ZUd pWWi LUy LWy 0000 L0OL LLLO bELL -1-1-1- ZUY<-pWWI(IXd 019Z)<<gUY YIM[[UY<-J U+ WY][zuypwwrjuy’jwy ¥Sy aavy
U ZWy LUy Wy 0000 000L LELO LEEL -1 -1 -7 - U <-gwid<<gUy YIMmLuy<- LU+ wy] gudewy’Luy LWy ¥SY aav
U pWWI LU WY 0000 FELO LLFO FELL -1 -1 -1 - cud<-pwwi(ixa ublis) ym[uy<-juy+wy]] zudpwwr uy Ly AON aavy
ZUd Wy LUy LW 0000 01O FELO LLLL -1T-1-1- cud<-cwy YIM[[uy<-ug+wy]] guycwd Iud LWy AON advy
Zuy Zwy Uy LWy 0000 LOLO LLLO LELL VIVI|V]Vv MSdI:pWwwI(Ixe ubis)-guy UIM[LUY<- LU+ WY]| zudpwwriuyiwy dND aav
ZUd Wy LU Wy 0000 0010 FFLO LEELD VIVIV]V MSdIcWH-Zguy UNIM[[UY<- LU+ W] ZudZWwyd U Wy JAD aav
ZUY pwwr LUy LW 0000 1100 FEVO LELE UEEE ZUd<-yWWI(}X3 UDIS)-guy UIM[JUY<- LU+ WY]| gudpuuriugiwy gns aav
ZUd Wy LUy Wy 0000 0F00 FFLO LEEL - -1 -1 - CUY<-cWy-2uy UIM[L UY<- LU+ Wy] U Iug LWy gns aav
"ZUY pWwl LUy LWy 0000 1000 LEFO LELE -1 -1 ZUY<-ZUd+pWWI(IXa UbIS) PIM[LUY<-L UG+ WY][gudpwwriugiuy aavy aavy
ZUd ¢Wy LUy Wy 0000 0000 FFLO LEED =T -1 CUd<-cUd+cWy UIM[JUg<-[Ug+[WY] U U Ty gav aav| MIT
92S [JzZUNHOHA
apoD aulyoey op0D) ber uonesadQ 2IUOWBUIN dnouo

13S NOILONYLSNI SIS 3C0LNIN

INSTRUCTION SET

364

Chapter4 APPENDIX

pueiado plig:zZ,pwwl
pueiado 1s|: |, pwiwi

"ZUY WY CLUY pWWI0LL000L0 LLLO LLLL |y |V |V |V |V MSdI:gWy-zuy Ypm[Luy<-pwwi(ixe ubis)-Luy]] zuyZwy Lud‘yuw dND 8ns
"ZUY PWWI L UY pWWI0LL0 LLOO LLLO LLLL | ¥ -l -] -] - U<z pwwi(ixe ubis)-zuy yumLuy<-, pwwi(ixe ubis)-juy]| zuy‘puwr’iuyyww ans gns
"ZUY ZWY LU FWWIOLLO0L00 LLLO LLLL | -l -] - Zuy<-zwy-guy ypmfpuy<-pwwi(ixe ubis)-Luy]] zuyzwy'luy'ywwl ans ans
"ZUY FWWI LUy $WWI 0410 LO0O LLLO LLLL ¥ -l -] - U <-ZUY+z pWwi(xe” ubis) yum[uy<-, pwwi(ixe” ubis)-Luy]| zuy‘puiwr’ L uy 'yl aay ans
"ZUY ZWY LUY FWWI0LL0 0000 LLLO LLLL | -l - -] - ZUY<-ZuY+zwy YyumLuyg<-puwwi(xe ubis)-Luy]]l zuy'zwy'luy'yww aay ans
"ZUY PWWILUY LWY 0100 LOLL LLLOLLLL | -l - -] - ZUY<-pWWI(Ixe 018Z)>>zuy Yim[Luy<-Lwy-Luy]| zuypuwriuywy ISy 9ns
"ZUY WY LUy LW 0L00 00LL LLLOLLLL | -l - -] - ZUY<-zWY>>Zuy YIm[Luy<-Lwy-Luy] Uz’ LUy LWy ISY ans
"ZUY PWWILUY LW 0100 LLOL LLLO LLLL | -] -] - ZUY<-pWWI(IXxe 018Z)<<Uy YIM[LUuY<-LWy-LUY][zuy'puu’ Luy’ LWy ¥ST 9ns
"ZUY ZWY CLUY LWH 0L00OLOL LLLO LLLL | p -l -] -] - ZuY<-gwy<<guy Yimlpuy<-Lwy-Luy] qud'ZWy LUy LWy ¥ST ans
"ZUy pWWi LUy LWy 0100 LOOL LLLO LLLL |¥ -l- -] - ZUH<-pWI(IXe 018Z)<<ZU¥ YIM[LUM<-LWH-LUY][Zudpwui Luy’ LWy ¥SY 9ns
"ZUY ZWy LUy LW 0L00 000k LLLO LELL | -l -] -] - Zud<-gwy<<guy Yyimlpuy<-Lwy-puy] qud'ZWY‘ LUy LWy ¥SY ans
"ZUY Wl Luy LW 0L00 LLLO LLLO LLLL | - -] -] - Zud<-pwwi(ixa ubls) YuM[LUuy<-LWwy-Luy]| guypwwr uyiwy AOW ans
Uy ZWY LU LW 0L00OLLO LLLO LLLL | ¥ - -] -] - Zud<-zwy yimfLuy<-Lwy-Luy]l guyowd’luy’lwy AOW 9ns
U ZWY CLUY LW 0L00 LOLO LLLO LLLL |$ |V |V |V |V MSdI:pwwi(Ixe UbIs)-zuy YIM[LUY<-LWy-LUY][Zudpuwriuy’lwy diND 9ns
Uy ZWy CLUY LWy 0L0000LO LLLO LLLL [y |V [V |V |V MSdIZWH-Zuy Yim[Luy<-Lwy-Luy] ud'zwy LUy LWy dWD 9ns
"ZUY PWWILUY LWY 0100 LLOO LLLO LLLL | NI EE Zud<-pwwi(ixe ubis)-zuy yumuy<-Lwy-Luy]] zguywwruylwy ans ans
Uy ZWy CLUY LWy 0L00 0L00 LLLO LLLL | -] - U <-zWy-zuy yimpuy<-Lwy-puy] gud'cwy’Luy LWy gns dns
"ZUY pwwi LUy LWy 0100 000 LLLO LELL |4 -1 -] - Zuy<-zud+pwwi(ixe ubis) yumfjuy<-Lwy-Luy]l zuypwwriuywy aavy ans
Uy ZWy CLUY LWy 0L00 0000 LLLO LLLL | - - Zud<-gud+zwy Yum[juy<-Luy-Luy] gud'ewy Luy LWy aav ans
"ZuY pWWl LUy Wwl LOLO LOLL LLLOLLLL | |V [V [V [V | Zud<—z pwwi(xe 018z)>>zuy YIMIMST:,, pwwi(ixe ubis)-Luy]] zuypuwrjuy s 1Sy dWD
"ZUY WY CLUY pWWl LOLOOOLL LLLO LLLL [|V |V [V |V Zud<-ZWy>>zuy YIMMST pwwi(ixe ubis)-Luy]] zuyzwy Luypuw ISy dIND
"ZUd PWWI LU pWWl LOLO LLOL LLLOLLLL [|V [V [V [V | gud<-—z pwwi(ixe 018Z)<<guy YIMMST:,, yWwwi(3xe ubis)-Luy]] zudpwwrjuygywwl ¥s1 dND
"ZUY ZWY LUy pWwil LOLOOLOL LLLO LLLL | [V [V [V [V Zud<-zWy<<zuy YIM[MSdIpwwi(xe ubis)-Luy]] zudzwy lugpuw ¥ST dAD
Uy Pl LUy Wi L0L0 LOOL LLLOLLLL [|V [V [V [V | Zud<-zpwwi(xe ubis)<<zuy UIM[AMSdT:,, ywwi(ixe ubis)-Luy][zuypwwrjuypwuwl 4SY diND
U ZWY TLUY $WWI LOLO 000L LLLO LLLL [§ [V |V [V [V ZUY<-gWy<<zUy UIM[MSdT:pwwi(}xe ubis)-Luy]l zuywy LUyl ¥SY dND
U Pl LU pWwt LOLO LLLO LLLOLLLL [[V [V [V |V U<z pwwi(1xa ubls) YIM[AMST:,, pwwi(Ixe ubis)-Luy][zugpwwrjpuygyww AOW dIND
Uy Wy LUy pwwil LOLOOLLO LLLO LLLL | [V [V [V [V Zud<-zwy UIM[MSdI pwwi(Ixe ubis)-Luy][zuyZw L uy i AOW dND
"Zuy FWWI LUy WWi LOLO LLOO LLLO LLLL | |V |V [V [V ZUY<-z pWWI(Ixa ubis)-zuy YUMIMSdT:, pWwI(Ixe ubis)-Luy]| zudpuwriuyywwl ans dnd
Uy ZWy LU WWi LOLOOLOO LLLO LLLL [y [V |V [V [V CUd<-gwy-zuy UIM[MSJI:ywwi(ixa ubis)-Luy]] guyzwy pud v gns dno
"Zuy Pl LUy pwwt 1oL L000 LLLO LLLL | ¥ V|V [V [V] zZud<-gud+zpwwi(ixd ubis) yUM[MSdT:, ywwi(ixa ubis)-Luy][zuypwwrjugdyww aay dnd
Uy ZWy TLUY WWi LOLO 0000 LLLO LLLL [[V |V [V [V ZUud<-gud+cwy YIM[MSdI pwwi(Ixa ubis)-Luy]| zgudzwy’ L udyww aay dNd
U pWWl LUy LWy 1000 LOLL LLLO LELL | b - -1 - ZUd<-pWWI(IXe 018Z)>>zuy UIM[MST L WY-LUY][cudpwuriuywy ISV dND
"ZUY Wiy TLuY LWy L000 00LL LLLOLLLL |t - ZUY<-gWy>>zuy YIM[MSdI: L Wy-Luy] gudzwy LUy LWy ISY diND
"ZUY pWwl LUy LWy 1000 LLOL LLLO LLLL | ¥ -] - - ZUH<-pWUWI(IXd 019Z)<<gUY UIMIMSdI L WH-LUud][Zudpwwrjud’iwy 94ST dND
"ZUY Wiy TLuY LWy L000 0LOL LLLO LLLL | -] - - Zud<-gWy<<guy UIMMSdT: L Wwy-Luy] udzwy LUy fwy 9ST dND
"ZuUd pWwl LUy LWy 1000 L0OL LLLO LELL | ¥ I EE ZUd<-yWWI(IXe 018Z)<<gUY YIM[MSJITWY-IUY][U PUWriug Ty °9SY dWD| MIT
92S [JzZUNHOHA
apon aulyoep oD Beq uonesad JIUOWBUN dnous

13S NOILONYLSNI S3I43S IC0ENIN

365

INSTRUCTION SET

Chapter4 APPENDIX

puesado pig:zZ, pwwl
pueiado 1s|: |, pwiwl

"ZUY W CLUY pWWI LLL000LL LLLO LLLL | o e ZUY<-ZWY>>Zuy Ym[Luy<-pwwi(ixa ubis)] zguy‘gwyLuy‘ywul 1Sy AOW
"ZUY PWWL L UY pWWl LLLO LLOL LLLOLLLL | -l -1 -] - U<z PWWI(Ixa 0JazZ)<<uy UIM[LUY<-, pwiwi(ixe UbIs)] zuy‘puirLuy puiwl 4ST AOW
"ZUY ZWY LU FWWILLLOOLOL LLLOLLLL |p -l - -] Zuy<-zWy<<guy yimfLuy<-pwwi(xe ubis)] zuy'zwy'Luyyww ¥S7 AOW
"ZUY PWWILUY pWWILLLO LOOL LLLOLLLL | -l -] - Zuy<-z pwwi(ixe Ubis)<<guy yum[juy<-, pwwi(3xe ubis)] zuy‘puuw uy'yuiwl Sy AOW
"ZUY ZWY LUY FWWILLLO000L LLLO LLLL |p - -] - ZuY<-zWy<<guy YyimfLuy<-puwi(lxe ubis)] zuyzwy'Luypuw ¥y AOW
"ZUY PWWILLUY pWWILLLO LLLO LLLOLLLL | -l - -] - Zu¥<-z pwwi(ixe ubis) yum[Luy<-; pwwi(ixe ubis)] zuypuwr’Luy pww AOW AOW
"ZUY ZWY LU pWWILLLOOLLO LLLO LLLL |p - -] - Zuy<-zwy ypmlLuy<-puwwi(3xe ubis)] zuyzwyuy‘ywwt AOW AOW
ZUY P LUY pWWL LLLO LOLO LLLOLLLL b |V [V [V |V zwwi(xe ubis)-zuy yim[juy<-, pwwi(ixe ubis)] zuy'pwwi’Luy puwl N AOIN
"ZUY WY CLUY pWWI LLLO00LO LLLO LLLL |¢ |V |V |V |V Zwy-zuy yumfLuy<-pwwi(ixe ubis)] zuy‘gwy Luy puw JWo AOW
"ZUY WL LUY pWW! LLLO LLOO LLLO LLLL | -l -1 -] - U<z wwi(xa ubis)-zuy Yum[Luy<-, pwwi(ixe ubis)] zuy‘puiwrLuyyuiw gns AOW
"ZUY WY LUY pWWI LLLO0L00 LLLO LLLL | -l - -] - ZUY<-ZWy-Zuy yum[Luy<-pwwi(ixe ubis)] zuy'zwy’Luy‘puwl gns AOW
"ZUY pWWl LUy pWWI LLL0 LO00 LLLO LLLL |p -] - ZUd<-gud+z ywwi(ixa ubis) yum[juy<-, pwwi(lxe ubis)] zud WL udww day AOW
"ZUY WY LU pWWI 11100000 LLLO LLLL | -1 -] -] - ZUY<-Zuy+zZWy yimLuyd<-pwwi(ixa ubis)] zuyzwy'Luy W aay AOW
"ZUY pWwi LUy LWy 1100 LOLL LLLO LLLL | -] - ZU<-pWwI(1xe 018Z)>>zuy Yim[Luy<-Lwy] zuypwwriuyiuy 1Y AOW
Uy ZWY CLUY LW LLO000LL LLLO LLLL | i ZUY<-ZWY>>guy Yyimfpuy<-Lwy] Zuy‘zwy’' LUy LWy 1SY AOW
"ZUY P LUY WY LL00 LLOL LLLO LLLL |p HIEEE Zud<-pwwi(Ixe 018zZ)<<zuy Yim[juy<-twy] zudpuwriuy’iwy ¥ST AOW
U ZWy CLUY LWy LLO0 OLOL LLLO LLLL | o e e ZUY<-ZWy<<guy YymfLuy<-Lwy] guy‘cwy’ LUy LWy ¥ST AOW
"ZUY pwwi LUy LWy 1100 L00L bLLO LLLL | -l -] - - ZUY<-pWWI(IXe 0J9Z)<<zUy YUM[LUY<-LWY] zuypuwriuyiwy ¥SvY AOIW
Uy ZWy CLUY LWy LL00 000L LLLO LLLL | o i e Zud<-zWy<<zuy yumLuy<-Lwy] zuyqzwy’ud’luwy ¥SY AOIW
"ZUY pWwWl LUy LW LL00 LLLO LLLO LLLL | -l -] - - Zud<-pwwi(ixa ubis) yumfjuyg<-Lwy] zuygpuwriuywy AOW AOIN
Uy ZWY CLUY LW LLOOOLLO LLLO LLLL | - - - Zud<-zwy yimfuy<-Lwy] zuygzwyuyiwe AOW AOW
U ZWY LU LW LLOO LOLO LLLO LLLL [[V [V [V |V MSdI:puwi(ixa ubis)-zuy yim[ud<-jwy] zugpuwriuygiwy dind AOW
U ZWY LU LW LLO000LO LLLOLLLL [[V [V |V |V MSdIzwy-zuy yimfjuy<-jwy] zugzwyuygiwy dind AOW
"ZUY Pl LUy LWy 1100 LLOO LLLO LLLL | -] - - Zud<-pwwi(1xa ubis)-zuy yumjuy<-jwy] zudpuwriuyiwy gns AOW
Uy ZWY CLUY LWy LL000L0O0 LLLO LLLL | - -] - ZUY<-gWy-zguy UIm[Luy<-Lwy] zudzwyudiwy ans AOW
U pliwl LUy LWy L1100 LO0O LLLO LLLL |f - -] - ZUY<-gud+pWwi(Ixa ubls) yum[juy<-lwy] zudpwwriuyiwy aay AOW
Uy "ZWy CLUY LWy 1100 0000 LLLO LLLL [I Zud<-gud+zwy yimfud<-fwy] zuyzwyuyiwy aavy AOW
Uy pWUWL LU WWi0LLO LOLL LLLO LLLL |3 - -] -] cud<z pwwi(xe 0182)>>zuy YIMILUY<- pwwli(ixa ubls)-Luy] zudpwwriuy il ISy 9ns
Uy ZWY LU WWIOLLO 00LL LLLO LLLL |¥ -l - U <-guwy>>zuy Yim L uy<-pwwi(}xa ubis)-|uy] guyewy L uy ywwl ISY dnsS
U Pl LUy pwwioLLo LLOL LLLO LLLL | - -] -] cud<-zpwwi(Ixe 019Z)<<U YIM[LUY<-, pwwi(}xa ubIs)-Luy] zuypuwrjuyywl ¥ST ans
Uy ZWY LU WWIoLLO 0LOL LLLO LLLL |¥ 1ol -] - ZUY<-guyd<<guy Yimuy<-pwwi(}xa ubis)-|uy] guy Wy LUy ywwl ¥ST ans
"ZUuY pWWl L Ud pWWioLL0 LOOL LLLOLLLL vy | - | - | - | - | cUd<z pUWWI(Xe 0I8Z)<<gUy UIM[JUY<-, yWWI(}Xe UBIS)-|UY] U WUl Ul Sy ans
Uy Zwiy TLuUY pWwwi 0LL0 000L LLLO LLLL |{ -] - - CUY<-gwyd<<guy YIM[Juy<-pwuwi(ixa ubis)-luy] zudzwd ludywwl 4Sy ans
Uy pWwl LUy pWWi0LL0 LLLO LLLO LLLL | - - - - ZUd<-z pwui(Ixe ubls) UiM[Luy<-, pwwi(}xa ubis)-Luy] guydpuwriuyyww AOW 9NS
Uy Wy LUy pWwwi 0LLOOLLO LLLO LLLL [P -1 -] - - Zud<-zwy yIm[Lug<-pwwi(ixa ubls)-luy] zudzwd judyww AOW NS
"ZUY pWWI L UY pWWi0LL0 LOLO LLLO LLLL |y |V |V |V |V | MSdTZ vWWI(IXe UbIS)-Zuy UIM[[UY<-, PUWWI(IX8 UBIS)-[UY] U PUWrfugyWwi givg ans| A
92S [JzZUNHOHA
apo aulyoep oD Beq uonesado JIUOWBUN dnous

13S NOILONYLSNI SIS 3C0LNIN

INSTRUCTION SET

366

Chapter4 APPENDIX

puesado pig:zZ,pwwi
puesado 1s}: |, pwiwi

Uy WY LUy LW 0L0L OLLO LLLOLLLL | -l - ZUud<-gwy yumfuy<-Ludy Wy zuyzwy’uy lwy AOW HOX
"ZUY ZWY CLUY LW 0L0L LOLO LLLOLLLL |b V|V MSdI:pwwi(ixe ubis)-zuy Yyim[Luy<-Luyy LWwy] zZuypuwn L uy LWy diND HoX
"ZUY ZWY CLUY LW 0L0L 00LO LLLO LLLL |b V|V MSdI:zWy-zuy Yim[Luy<-Luyywy] zuyzwyLuy’lwy diND HOX
"ZUY PWWILUY LW 0L0L LLOO LLLO LLLL |p - - Zud<-pwuwi(ixe ubis)-guy Yyum[Luy<-Luyywy] zuypuiwruyiuy gns ¥ox
"ZUY WY LUy LW 0L0L 0L00 LLLO LLLL | - - ZuY<-zwy-guy yim[Luy<-Luyy LWy guyzwyuylwy gns HoxX
"ZUY PWWILUY LWY 0L0L LO00 LLLO LLLL |p - - Zuy<-zuy+pwwi(ixe ubis) yumlLuy<-Luyy LWyl zuypwwruyiwy aay "oxX
"ZUY ZWy CLUY LWy 0L0L 0000 LLLO LLLL |b -l - ZUY<-ZUY+ZWY YIMm[LUuY<-LuYylwy] zguyZzwyluy’lwy aay ¥ox
"ZUY PWWLLUY LW 00LL LOLL LLLO LLLL |p - - ZUY<-pWWI(1xe” 018Z)>>zuy Yim[Luy<-Luy|Lwy] Uy Pl LUy Lwy ISY ¥0
"ZUY ZWY CLUY LW 00LL 00LL LLLOLLLL |f - - ZUH<-ZWY>>Zuy YIm[Luy<-Luy|Lwy] udzWy LUy LWy ISy YO
Uy pWWI LUy LW 00LL LLOL LLLOLLLL | - - ZU<-pWI(1xe 018Z)<<zuy YIM[Luy<-|Luy|Lwy] Ul LUy’ LW ¥ST HO
"ZUY ZWY CLUY LW 00LL OLOL LLLO LLLL |f - - ZUY<-ZWy<<zuy Yum[Luy<-Luy|Lwy] qUY'ZWY LUy LW ¥ST HO
"ZUuY pWwi LUy LWy 00LL LOOL LLLO LLLL | -l - ZUd<-pWWI(Ixa 018z)<<zuy UM uy<-LUy[LWwy] UYL LUy LW ¥SY HO
"ZUY WY CLUY LW 00LL 0004 LLLOLLLL |f - - ZU<-zWy<<zuy YIm[Luy<-Luy[Lwy] ueZWy LUy LWy ¥SY HO
Uy Wi LUy LW 00LL LLLO LLLO LLLL | -1 - Zud<-pwwi(xe ubis) yumfLuy<-Luy[wy] Zudpuwr LUy’ Lwe AOIN HO
"ZUY ZWY LU LW 00LL OLLO LLLO LLLL |p - - Zud<-zwy yumpuy<-Luy[jwy] Zudzwy LUy LWy AOW 0
"ZUY ZWY LU LW 00LL LOLO LLLO LLLL |p v |V MSdI:pwwi(ixe ubis)-zuy yum[uy<-Luy[jwy] Uy LUy LWy dWD HO
"ZUY ZWY LU LW 00LL 00LO LLLO LLLL |p v (v MSdIZWy-zuy yumfuy<-Luy[Lwy] qudZWy LUy Wy dND HO
Uy pwwi LUy LW 00LL LLOO LLLO LLLL | -1 - Zuy<-pwwi(ixe ubis)-zuy yimlpuy<-Luyfwy] U LUy LWy gns {0
Uy ZWY LUy LWy 0014 0L00 LLLO LLLL ¥ - - ZUd<-zWy-zuy yimlpuy<-juyfwy] qudzWy LUy LWy ans ¥o
"ZUY pwwi LUy LWy 0041 LO0O LLLO LLLL | -1 - Zuy<-zud+pwwi(ixe ubis) ypm[uy<-Luy[wy] U W LUy’ LWy aay ¥o
"ZUY Wy CLUY LW 00LL 0000 LLLO LLLL |{ - - Zud<-gud+zwy yim[uy<-puyfwy] udzw LUy LWy aavy "o
"ZUY Pl LUy LWy 000L LOLL LLLO LLLL |f - - ZU<-pWWI(IXe 018Z)>>zuy YIm[Luy<-LuypLwy] zudpwwriuygiuy ISY aNy
"ZUY WY CLUY LW 0004 00LL LLLO LLLL |f - - Zud<-gwy>>zuy YimfLuy<-Luygwy] udZWe LU LWy ISY ANV
"ZUY Pl LUy LWy 0001 LLOL LLLO LLLL |f - - ZU<-pWWI(IXd 0J8Z)<<zgUY YIM[UY<-Lugglwy] zudpwwriugiwy ¥ST aNy
Uy ZWY TLUY LWy 000L OLOL LLLO LLLL | - - ZUY<-gWy<<zUY YIM[LuY<-LuyR | wy] U W LU LW ¥ST ANV
Uy Pl LUy LWy 0001 LOOL LLLO LLLL |f - - ZUY<-FWWI(X8 018Z)<<gUy UIM[LUY<-LUYRlWY] zudPwwriuyiwy ¥SY any
Uy "ZWy CLuyY LWy 0001 000L LLLO LLLL | - - cud<-zWy<<gUuy Ypm[Luy<-juygwy] guy ‘W LUy LWy ¥SY ANV
U P LUy LWy 0001 LLLO LLLO LLLL | - - Zud<-pwwi(ixe ubls) ypmjuy<-Luypiwy] zguydpwwriuywy AOW ANV
Uy ZWy CLUY LWy 000L OLLO LLLO LLLL | - - ZUY<-cwy YIM[uyd<-Luygiwy] gudzwd L ud lwy AOIN ANV
Uy ZWy CLuyY LWy 0001 LOLO LLLO LLLL | V|V MSdIpWwWI(IXd ubis)-zuy UIM[LUY<-LUYRLWY] zgudpuuwriuyjwy dND ANV
Uy "ZWy CLUyY LWy 0001 00L0 LLLO LLLL | VIV MSdIcwy-zuy Yyim[ud<-Luggiwy] zudzwyudiwy diND aNy
U pWWl LUy LWy 0001 LLOO LLLO LELL [P -1 - ZUud<-pWwWI(i1xa UbIsS)-guy UIm[LUuy<-LuygRlWwy] zugpuwriugiwy gnsS anvy
ZUY Wy CLuY LWy 0001 0L00 LLLO LLLL |{ - - ZUud<-gwy-guy UM uy<-jLuygwy] gudzwy LUy lwy gns any
Uy pwwil LUy LWy 0004 LO00 LLLO LLLL |§ - - ZUY<-gud+pwui(iIxa ublis) UM ud<-Ludglwy] zudpwwriugiwy aavy aNy
"ZUY "Wy CLuy TLWwy 0001 0000 LLLO LLLL [{ - - ZUud<-gud+gwy YIm[Luy<-judewy] gudzwye LUy lwy aav anvy
U pWWl LUy pWWl LLLO LOLL LLLO LLLL |3 -1 - ZUd<-Z yWWI(IXd 0J9Z)>>gUy JIM[[UY<-, yWWI(IX3 UDIS)] U pWWr fUHWUW ISY AOW| AAIT
92S [JzZUNHOHA
8po) auIyde o000 Bely uonelado JlUOWBUIN dnouo

13S NOILONYLSNI S3I43S IC0ENIN

367

INSTRUCTION SET

Chapter4 APPENDIX

ZuY<-zWy<<guy yum
Yo <-THON+0:G L]uy(xe ubis),[0:G L Jwy(1xe™ ubis)
"ZuY "ZWiy LUy LWy L00L 0004 LLLO LLLL b - - +[91:1€luy(1xa”ubis),[9: L g]wy(ixe”ubis)]| Zud'zuR LUy’ |UY ¥SY HOVING
Zuy<-pwwi(ixe ubis) yum
Yo <-THON+0:5L]uy(xe ubis),[0:G L]wy(1xe™ ubis)
ZUY pWwl LUy LWy LO0L LLLO LLLO LLLL b - - +[91:1€luy(1xa”ubis),[9): L glwy(1xe”ubis)]| zuyywwijuy'|wy AOW HOYING
Zud<-zwy ypm
YN <-THON+H0:5 L Iuy(xe ™ ubis),[0:G L Jwy(1xe ubis)
Uy ZWY CLUY LWy LOOL OLLO LLLO LLLL | - - +[91:1.gluy(ixa ubis),[91: L glwy(1xa ubis)] ZudZwy LU LWIAOW HOYING
MSdI:pwwi(ixe™ ubis)-zuy yum
YN <-THON+H0:5 L 1uy(xe ™ ubis),[0:G L Jwy(1xe ™ ubis)
"ZUY WY CLUY LWy L00L LOLO LLLO LLLL |f V|V +[91:1€]lug(xaubis),[9]:] c]wy(1xe " ubis)] Zud W LUy LW dND HOVING
MSdI:zwy-zuy yum
Yo <-THDN+0:5 L]uy(xe ubis),[0:G L]Jwy(1xe™ ubis)
U Wy CLuy LWy L00L 00L0 LLLO LLLL |b V|V +[91:1elud(xeubis),[91: L lwy(3xo™ ubis)] ZudTWY' LUy LWHdIND HOVING
Zud<-pwwi(ixe ubis)-guy yum
Yo <-THON+0:5 L]uy(xe ubis),[0:G L]wy(1xe™ ubis)
"ZUY P LUy LWy L00L LLOO LLLO LLLL |p - - +[9L:1eluy(ixa”ubis),[9: L g]wy(1xe~ ubis)]| Zud W UYL WYENS HOVING
Zuy<-gwy-zuy ypm
YN <-THON+H0:5 L]uy(xe ™ ubis),[0:G L Jwy(1xe ™ ubis)
Uy ZWY TLUY LWy LOO0L 0L00 LLLO LLLL | - - +[9L:1gluy(ixa ubis),[91: L clwy(ixa™ ubis)] ZudZwy LU LWy gnS HOYING
Zud<-zuy+pwuwi(ixe ubis) yum
YO N<-THON+H0:5 L 1uy(xe ™ ubis),[0:G L Jwy(1xe ™ ubis)
U pliwl LUy LWy LO0L LO0O LLLO LLLL |{ - - +[91:1gluy(xa ubis),([91:Lelwy(xa™ ubis)] gudpwwr' | uy'lwyaay HOYING
Zuy<-gud+gwy Yyum
[TYON<-THON+[0:5 L]uy(1xe ubis),([0:5 1 Jwy(1xe ubis)
"ZuY "ZWy LUy LWy L00L 0000 LLLO LLLL |p - - +[9L:1eluy(xa™ubis),[91: L e]wy(1xe~ ubis)]| ZuyTwy' LUy LWy aay HOVYING
"ZUY PWWIL LUy LW 0L0L LOLL LLLO LLLL [P -l - ZUd<-pWWI(IXe™ 0J82Z)>>guy YIM[Luy<-Luyy L Wy] U Wiy LWy ISV HOX
Uy ZWy LUy LW 0L0L 00LL LLLOLLLL | -1 - ZUY<-ZWY>>ZUyY YIm[Luy<-Luyy L wy] U WY LUy LWy 1SV HOX
Uy pwwitLuy LWy 0LoL LLOL LLLO LLLL [P ol Uy <-pWWI(IXe 019Z)<<guy YHM[LuY<-|Luyy | wy] UL P LU LW ¥ST HOX
Uy ZWy LUy LWy 0L0L 0LOL LLLO LLLL ¥ -1 - U <-zWy<<zuy YIm[Luy<-Luyy wy] U WY LU L WY ¥STT ¥OX
Uy pwwil LUy LWy 0L0L LOOL LLLO LLLL |{ -1 - ZUd<-pwwI(1xa 01aZ)<<zuy YIM[LUY<- LUy Wwy] U puwriuyiwy 4SY J0X
U WY LUy LW 0L0L 0004 LLLO LLLL |p -1 - Zug<-zwy<<guy UM ug<-tudywy] cudeWy ug iy 9SY 90X
U pwWL LUy LWy 0L0L LLLOLLLO LLLL b -1 - ZUd<-pwwi(Ixa ubis) yum[uy<-Luyy jwy] gudpuwriug iy AOIN HOX| MIT
92S [JzZUNHOHA
8po) auIyoe o000 Bel uonelado JlUOWBUIN dnouo

13S NOILONYLSNI SIS 3C0LNIN

INSTRUCTION SET

368

Chapter4 APPENDIX

Zuy<-pwwi(1xa 0Jaz)<<guy YIM
"ZUY PWWI LUy LWy LLOL LOOL LLLOLLLL |p ol el el e Mo:gLliud<-[or:reliwy oL L eliud<-[0:G LT wy] U puwr | uy LWy ¥SY MHMS
ZuY<-gWy<<guy Yum _
"ZUY "Wy LU LWy 1101 000k LLLOLLLL | ol el [o:silud<-for:reliwy oL Leliud<-[0:GL] L WY] USTWY' UYL WY ¥SY MHMS
uy<-pwwi(xe” ubis) ypm
"ZUY PWWILLUY WY LLOL LLLOLLLO LLLL |p ol el el e Mo:gLliud<-[or:reliwy oL L eliud<-[0:G L] wy] gud'pwuwruy’ LWy AOIN MHMS
Zud<-zwy yum _
TUY ZWY LU LW LLOLOLLO LLLOLLLL | el Il e [lo:sLliud<-loL:LeliwyoL:Leliud<-[0:G L1 wy] 2ud Wy LUy LWy AOIN MHMS
MSdIpwwi(3xe~ ubis)-zuy ypm
"ZUM W LU LW LLOL LOLO LLLOLLLL |y |V |V |V |V [lo:gLliud<-[9L: el wyloL:Lelud<-[0:G1L] wy] Zud'puwruy L wy dNO MHMS
MSdI:zwy-zuy yum _
"ZUY W LU LW LLOL 00LO LLLOLLLL |y |V |V |V |V [lo:sLliuy<-lor:reliwyoL:Leliud<-[0:G L1 wy] 2udTwy LUy LWy dND MHMS
Zuy<-pwwi(xe” ubis)-zuy yum
"ZUY P LUY LWy LLOL LLOO LLLO LLLL |p -] Mo:gLliuy<-[oL:Leliwy oL L eliud<-[0:G L] wy] udpuwr | uy LWy ans MHMS
ZuY<-gWy-guy yim _
"ZUY ZWY LU LWy LLOL OL00 LLLO LLLL |p -l - - [lo:sLliuy<-for:Leliwy oL Leliud<-[0:G LI wy] 2UHZWY LUY L WY 8NS MHMS
Zud<-zud+pwwi(3xe ubis) ypm
"ZUY P LUy LWy LLO0L L000 LLLO LLLL |p - -] - o:silrud<-[oL:Lel w9l L el ud<-[0:G1] L wy] gud'puwr L uy’ LWy aay MHMS
Zud<-gud+gwy yam _
"ZuY "Wy LUy LWy L10L 0000 LLLO LLLL | -] - - [lo:siliud<-for:ieliwy oL peliud<-[0:GLlLwy] 2UdZWy LU WY aay MHMS
ZUuy<-pwWwi(1xa 0J9z)>>guy YIM
[THON<-THON+[0:GL]uy(xa™ ubis),[0:GL]wy(1x” ubis) _
"ZUY Pl LUy LWy LOOL LOLL LLLO LLLL | -] -] - +[91:1€lud(xa”ubis),[91: L clwy(ixe ubis)] ud‘PwwI LUy L WY ISY HOVING
ZuY<-zWwy>>guy Yum
[THON<-THON+[0:G LUy (X ubis),[0:GL]wy(1xe™ ubis) _
"ZUY WY CLUY LWy L00L 00LL LLLO LLLL |p -l -] - - +[91:1€lud(ixa”ubis),[9L: L lwy(ixe™ ubis)] cudTWY LUy | WY ISY HOVING
ZUY<-pUWWI(IXd 019Z)<<zuy YUM
[THOW<-THON+[0:G1]ud(1xa™ ubis).[0:GL]wy(1xe™ ubis) B
Uy Pl LUy LWy LOOL LLOL LLLO LLLL | ol B e +[9L:1elud(ixaubis),[9): L elwy(Ixa~ubis)]| guy W LUy | WHEST HOVING
ZuY<-gWy<<guy YIm
[THOW<-THON+[0:GL]ud(1xa™ ubis).[0:GL]wy(1xe™ ubis) B
U ZWy CLuyY LWy Lo0L OLOL LLLO LLLL |b ol B e +[9L:1elud(ixaubis),[9: L clwy(xa~ubis)]| gudTWy LUy |WHEST HOVING
ZUY<-pWWI(IXd 018Z)<<zuy YUM
[THON<-THON+[0:GL]uy(3x™ Ubis),[0:GL]wy(1x™ ubis) _
"ZUY Pl LUy LWy LO0L L0OL LLLO LLLL |f -l -] -] - +[9L:1eluy(ixaubis),[oL: L Elwy(ixe ubis)] Zud W LUy | WHESY HOVING| M
92S [JzZUNHOHA
8p0D BUIYB o000 Bely uonesadp OlUOWBU dnouo

13S NOILONYLSNI S3I43S IC0ENIN

369

INSTRUCTION SET

Chapter4 APPENDIX

010} Wl "Wy Uy 0000 0L LL LLLOLLLL | o e uoieIado Bl UM iy <-p+Wy Uy <-(Wy)zswaw Uy (P +wiy) VT AOW
0010 Wi "Wy Uy 0000 0LLL LLLOLLLL | o I e uoielado S| YpM' uy<-p+Wy Uy <-(Wwy)zswaw Uy (puwr'+wy) SOT AOW
LLLO pWWI "Wy “Ud 0000 OLLL LLLOLLLL |¥ o e e uoelado s|| YIm‘wy<-p+Wy‘uy<-(wy)zgwaw Uy (P + W) STT_AOW
0110 i "Wy Uy 0000 0LLL LLLOLLLL | o e e uoielado 2] YpM uy<-p+Wy Uy <-(Wwy)zgswaw Uy (P’ +wy) 90T AOW
LOLO pWWI "Wy “UY 0000 OLLL LLLOLLLL |p -1 -] uoielado Iy Ypm'uy<-p+Wy uy<-(wy)zgwaw U (P + W) IHT AOW
0000 P! "Wy Uy 0000 0LLL LLLOLLLL | -1 -] uoielado Jj| yim wy<-p+wy‘uy<-(wy)zgwaw Uy (i +w) 177 AOW
1100 W1 "Wy "ud 0000 OLLL LLLOLLLL |¥ -l - -] - uoijelado 8| YIm wy<-p+Wy uy<-(wy)zewaw Uy (P + W) 371 AOW
0100 Pl "Wy “u¥ 0000 0LLL LLLOLLLL | -l - -] - uonetado 8b| Ypm wy<-p+Wy uy<-(wy)zgwaw Uy (puwr+wy) 397 AOW
1000 plW! "Wy “ud 0000 OLLL LLLOLLLL |§ -0 - -] - uoietado 16| Yyim‘wy<-p+Wy Uy <-(wy)zgwaw Uy (puwir+wy) 197 AOW
LOOL plW! "Wy “ud 0000 OLLL LLLOLLLL |§ - - -] - uoielado au| UM Wy <-p+Wy uy<-(Wy)zgwaw Uy (P +wie) INT AOW
000} Pl "Wy “u¥ 0000 0LLL LLLOLLLL ¥ -0 - -] - uonetado ba| Ym wy<-p+Wy uy<-(Wy)zgwaw Uy (P +we) D371 AOW
"Zud pWwl LUy LW LOLL LOLL LLLOLLLL |b -l - -] - Zud<-pWwi(Ixe 048Z)>>zuy Yyumuy<-wy('do9Llvs)l| zudpwuwrjuy |WwyIsy 9L1vS
Uy ZWY CLUY LW LOLL 00LL LLLOLLLL | -l - -] - ZUY<-zWy>>zuy Yimuy<-wy('do9LLvs)ll zudzwy'Luy LWy ISY 9LLVS
"ZUY pWwWl LUy LWy LOLL LLOL LLLO LLLL | -l -1 -] - ZUY<-pWwi(Ixe” 018Z)<<zuy YIM[uy<-wy('dO9L1VS)]| zud'pwwrluy |WSYST 9L1VS
Uy ZWY LUy LW LOLL OLOL LLLO LLLL | -l -1 -] - U <-zwWy<<zuy Ymuy<-wy('do9L1vs)]ll zudZwy Luy' LW YST 9LLVS
"ZUY pwwi LUy LWy LOLL LOOL LLLO LLLL | -l -1 -] - Zud<-pwuwli(Ixe 018Z)<<zuy YImuy<-wy('dO9L1VS)]| zud'pwuwi L uy' |WSYSY 9L1VS
Uy "ZWy LUy LWy LOLL 000k LLLO LLLL | -l - -] - U <-gwWy<<zuy Ymuy<-wy('do9L1Vvs)]l| zudZwy LUy LW YSY 9)1VS
"ZUY pWwWl LUy LWy LOLL LLLO LLLO LLLL | -l - -] - zud<-pwuwi(ixe ubis) yumluy<-wy('doglL LvS)l| zud‘pwwr'uy | WS AOW 9L1VS
Uy ZWY CLUY LW LOLL OLLO LLLO LLLL | -l -] -] - gud<-zwy yimfuy<-wy('dogLLvS)l| zud'zwy LUy LWIAON 9L1VS
U ZWy UM LW LOLL LOLO LLLOLLLL v |V [V [V |V MSdIpwuwi(ixe ubis)-zuy ypmuy<-wy('do9L1vs)]| zud‘puwr’ | uy WS dIND 9L1VS
U Wy LUY LW LOLL 00O LLLOLLLL v |V [V [V |V MSdI:ZWy-Zuy Yimuyg<-wy("'dOgLLVS)]| zudguy Luy LWy dND 9L1VS
"ZUN P LUy LW LOLL LLOO LLLO LLLL |B -1 -] -] - Zud<-pwwi(ixe ubis)-zuy yumluy<-wy('do9L1ys)l| zud'pwwrluyiwyans 9L1vs
U ZWy LUy LWy LOLL OO0 LLLO LLLL |b -] - - Zu¥<-zWy-zuy Yyumuy<-wy('dogLLvS)]| zud'zwy Luy wydns 9L1vs
"ZUy Pl LUy LWy LOLL LO00 LLLO LLLE [P -l -1 -] - Zu¥<-Zuy+pwwi(ixe ubis) yumuy<-wyH('dO9L1VS)]| zud'pwwrluy'lwyaay 9LLvs
"ZUY Wy LUy LWy LOLL 0000 LLLO LLLL |b -1 -1 -] - ZUN<-ZUYH+ZWy YIMuy<-wy('dO9L1VS)]| zudgwy Luyiwyaay 9Llvs
ZUY<-pWWI(IXd 0J9Z)>>zuy YiIm
"ZUY pWwWl LUy LWy LLOL LOLL LLLO LLLL | -l -] -] - [o:gLliud<-[oL:ieliwy (oL Leliud<-[0:G L] Wy zud'pwwr L uy LWy 1SY MHMS
ZUH<-ZWY>>ZUyY YIm
Uy ZWY CLUY LW LLOL 00LL LLLOLLLL | -l -] - - [o:gLliud<-[oL:ieliwy‘ (oL Leliud<-[0:GLIL WY ZuyZwy LUy LWy ISY MHMS
ZUY<-pWWI(IXa 019Z)<<zuy YiIm
"ZUY pWwWl LUy LWy LLOL LLOL LLLO LLLL | -1 - - [o:gLliud<-[oLieliwy‘ (oL Leliud<-[0:G L Wy zZuypuwr Luy LWy ¥ST MHMS
U <-ZW<<ZUy YIm
ZUY WY LUy LWy LLOL OLOL LLLO LLLL |b -l -] -] - Mo:siliud<-[oL:ieliwy oL Leliud<-[o:G LI W] zuyZwy LUy LWE ¥ST MHMS| MIT
92S [JzZUNHOHA
apo aulyoep oD Beq uonesado JlUOWBUN dnoug

13S NOILONYLSNI SIS 3C0LNIN

INSTRUCTION SET

370

Chapter4 APPENDIX

ua-LLLLoLloLLLL 2 |V |V |0 |0 uQg<-DYoON (ug X139) uQ'wa si4an
ua-LoLLOLLOLLLL |2 ¢l elolv AN MSdI<-4ADNUA<-TION (ug X10139) ugq'wa €44an
ua-00LLOLLOLLLL |2 ¢l elolv A MSdI<-IADN‘UA<-HYOW (ug XHO139) u@'wa zi4an
[8:51]ua<-[o:zZ]Jwa’o:Zlua<-Ig:g1]wa
uaqwa LooL OLLO LLLL |2 -] - - [vz:1elua<-l9L:czlwa‘lor:ezlua<-vez:Lelwa (ug'wa HAYMS) ud'wa 604an
[yz:1elua<-lo:ZlwaTol:ezlua<-Ig:g1]wa

uaqwaoool 0LLO LLLL |2 - -] - [8:51lua<-[9}:ezlwa‘lo:Zlua<-lvz:Lelwa (uq'wa dvms) ua'wa go4an
uquatiLiooLlo bkl [z |é [é 1ol & yoJess Jiq (ug'w@ HOSg) ua'wa Zo04an
ua-o0LLooLLoLLLL |2 ¢ [é [0 Lo ua<-91<<({T9ON'HION})8PereINIeS (U@ 8¥L1SOW) ug'wa 904an
uqualoLooLlo Lkl |2 |V [V] el ¢ ug<-(wq@)yzeenies (ug'wq ¥elvs) ug'wa sodan
uquaooLooLloLLLL |2 |V [V] el ¢ ug<-(wq@)oleenies (ug'w@ollvys) ud'wa ¥04an
ugqwaiLiLoooLloLLLL [z |é [é| OfL/0 ud<-(T4oIN)631eINes (ug 6LSOW) u@'wa €o4an
(U@ 81SON/uQ@ 9MSOIN/ud ZELSOIN)
ugqwaoLoooLLoLLLL g | é|é| O/0 ua<-({T4OW‘HYOWHwQ 8lenjes ug'wa co4an
Zewwiudlo Looo LOLL LLLL |9 [V [V [¢ & {ug'odani<-ug,.zcwuwi | (ugzeww NOININ) udzewwr L.ondan
QLW uaeo Looo LLOL LLLL | [V [V | é] & {ug'odanwi<-ug.9lwwi(ixa oiaz)| (ugoLwwiNOININ) udolww L.ondan
“TQuIWIUAoeo 000 LOOL LELE |€ |V [V [] ¢ {UgOYaN}I<-uQ,8wwI(xe 0182) (U@'gwuwr NO NN U@'swu ,oN4an
uqualooooLlo Lkl | |V |V | el ¢ {ugOYan’<-ua.wa (UgWw@noTN) U@wa 1o4an
“TZEWwIuaoo 0000 LOLL LLLL |9 [V [V [] e {ug'OYani<-ug.ccww (UQZewwr OINIA) udzewwr 0o4an
"'gLWWIUQo0 0000 HLOL LLLE |y |V [V | &] & {UGDYaN}<-UQ,91 WWI(}xe UDIS) (U9 O INA) Uug9orwwi 0o4an
TUguwirugoo 0000 book LLLL g [VIIVT el ¢ {ug Oddns<-ug,8wwi(3xa ubis) (ug'gwwr DINN) ugguwr 0o4dn

uquwaooooo0klO LkLL |2 |V |V | & ¢ {ugogani<-uag,.wa (UgW@ oINW) Ud@a 004an| 4an

92S [JzZUNHOHA
9p0) auIyde oD Bely uonesad JlUOWBU|N dnoug

13S NOILONYLSNI S3I43S IC0ENIN

371

INSTRUCTION SET

L>>{uyX}=uad

...... 8P -"Uj "W X000 0LOL LIOL LLLL

uQgd<-(Wwy+gp)yowaw

ug4‘(wy‘gp) AONA

{u'zi=ua4

“Z- U WY Y 10 00L0 LIOL LELL

ugd<-(1y+wy)yowaw

ug4‘(1y‘wy) AOWA

L>>{uyx}=uad

-uj Wiy X000010L LOOL LLLL

ugd<-(wy)yowauw

ug4‘(wy) AONA

4

4

€
........ ZEWWI L0LO LLOL LOLL LLLL |9 H¥Odd<-zgwuwl HOdd ‘zewwi AONA
—-- "Wy L0LO LLOL 10O} LLLL [E Hodd<-wy ¥Od4d'Wwy AOWAS
“UY - 1110 L10L LOOL LLLL[E UuY<-4Od4 uy‘y40dd4 AONW4
{us‘X}=us4 TZEWWI UGS - X1 L0 0LO0OLLL LLLL |2 uSd<-gzewul us4‘zewwi AOINAL
{ug'X}=usd US "WYY XLL00LOO LOOL LLLL |E ug4<-wy us4‘wy AOWH
{ws‘Al=ws 4 U WS LALO LLOO LOOL LLLL |E Uy<-ws4 uy‘ws4 AOWA
{us'X}=usq4{ws A}=ws4 “US WS XA0000L0 LOOL LLLL [E US4<-WwsS4H usS4'ws4 AOWA
{ws‘A}=ws “TZEWWI Uy WS LAOO LLOOOLLL LLLL |2 uy<-zewuwi+uy (Uy)zsweawi<-wsS | (zewwi'+uy)‘ws4 AOWAS
{ws‘A}=ws WU Uy WS LAOO LLOO LOLL LLLL |9 Ut<-pzwiwi(xe ubisj+uy(uy)zewew<-wsS | (yzwwi'+uy) ws4 AONS
{ws'x}=ws QUL UY WS LAOO LLOO LLOL LLLL |# Uy<-guiixe ubis)+uy(uy)zews<-wsy | (guiwil‘+uy) WS4 AONS
{ws‘A}=ws UM WS LA0O 1100 LOOL LLLL € UY<-70000000X0+Uy (UN)ZeWa<-WS (+ud)'ws4 AOWA
{us‘Xx}=us4 TZEWW US WY X100 0L00 OLLL LLLL [WH<-ZEWWHWY USH<-{Wy)zewsw | usH (Zewwi'+wy) AOWAH
{us'x}=us4 “pgWIlWI US Wy X100 0L00 LOLL LLLL |9 Wy<-pzwpxe ubisj+wy uSd<{wy)zewsw | USH (yzwwn +wy) AOWS
{us‘x}=us4 “guIW "US WY X100 0400 LLOL LLLL |# W<-guWI(xe” ubIs)+uy US4<-{Wyzewsw | US4 (gwwi’+wy) AOWS
{us‘x}=us4 “US Wiy X100 0100 LOOL LLLL |€ - [Ud<-#0000000X0+WH US J<-{Wy)zeWwsw usd'(+wy) AONA
{ws'A}=ws4| ZEP — “WS OALO LLOOOLLL LLLL |2 (Zep+dS)zZeWwaw<-WSH (dS‘zep)'ws4 AOINS
{fws'Al=wsy | ¥Zp - WS OALO L1100 LOLL LLLL |9 - [¥zp(1xe™ 0192)+dS)zcWal<-WS § (dS'vzp)'ws4 AONAH
{wsx}=ws4| 8P - WS OALO LLOO LLOL LLLL |¥ - | (gp(1xe 018Z)+dS)ZcWaW<-WS S (dS'8p)'ws4 AOWA
{ws'Al=ws4| ZEP Uy WS OA00 LLOOOLLL LLLL |2 (zep+uy)zZewaw<-wSH (uyzep)'ws4 AOWA
{ws'A}=ws4| ¥Zp “"uY WS OA00 LLOO LOLL LLLL |9 - [(yZp(1xe™ ubis)+uy)zewaw<-WsH (udyzp)'ws4 AOWA
{wsx}=ws4| 8P Uy "WS OA00 LLOO LLOL LLLL |¥ - | (8p(ixa ubis)+uy)zewaw<-wSH (uy'gp)'ws4 AONA
{ws‘z}=ws “Z-"WS UY TS LLLO LLOO LLOL LLLL [P (I+uy)zewaw<-wsH (”d'uy)‘wsd4 AONA
{ws Al=ws --- WS OALO LL0O LOOL LLLL |€ (dS)zewaw<-wsH (dS)'wsd AONA
{ws‘Al=wsH Uy WS 0A00 L 10O LOOL LLLL (€ (uy)zewsw<-wsH (uy)'ws4 AONA
{ug'’x}=us4| ZEP "US ---X0L0 0LOOOLLL LLLL |2 uSd<-(zep+dS)zewaw us4(dszep) AONA
{ug'’xt=us4| ¥ZP "US - X0L0 0L00 LOLL LLLL |9 USd<-(yZp(1xa 018Z)+dS)zcwaw us4(dSvzp) AONA
{us'x}=us4| 8P "US ----X0L0 0L00 LLOL LLLL |1 US4<-(gp(IXe 018z)+dS)zcwaw us4(ds’sp) AOW4
{ug'’x}=us4| " ZEP "US "Wy X000 000 OLLL LLLL (2 USd<-(zep+wy)zcwaw usd(wy'zep) AONA
{ug'’x}=us4| ¢ ¥ZP "US WY X000 0L00 LOLL LLLL |9 uSd<-(yZp(1xa ubis)+wy)zcwaw usd(wy'vep) AONA
{us'x}=us4| 8P "US WY X000 0L00 LLOL LLLL |¥ -| usd<-(8p(1xa ubIs)+wy)zcwaw us4(wy'gp) AONA
{us'z}=us+ -Z--"US WY Y LLLO OLOO LLOL LLLL |¥ uSH<-(rg+wy)zcwaw usH (r'wy) AOW4
{us'x}=us4 “ug ---X0L0 0L00 LOOL LLLL |€ uSd4<-(dS)gcwaw us4(ds) AONWA

{us'x}=us4 US Wy X000 0100 LOOL LLLL [€ uSd<-(Wy)zcwauw uS(wy) AOWS | AONAS
910N 8po) aulyoe H_D_n_m__u_o_u_._ =l _H_D_“_O_H_N_n_> uonesadQ olUOWBUN dno.o

Chapter4 APPENDIX

13S NOILONYLSNI SIS 3C0LNIN

INSTRUCTION SET

372

Chapter4 APPENDIX

{us'x}=usd{ws‘A}=ws4 “"ZEWWI "US WS XA000LLOOLLL LLLL |2 -l -] -l -|V|V|V|V|V USH<-gewwl+WsH usd‘'wsd‘zeww! aagv4d
USZ}=Us4 {ows Al=zws4{ W X=pws4 -ZAX "'US "ZWS "LWS 0000 0LLO LLOL LLLL |¥ -l -] -l -|V|V|V|V|V USd<-gWSH+lWSd | usSd‘zwsd‘lwsd aav4d
{us'X}=usd{ws’'Al=wsA “Ug WS XA00 0LLO LOOL LLLL | -l -]l -l -|V|V]|V]|V|V us4<-ug4+wsH us4'wsd4 aav4| aavd
{ws'At=wsH “ZEWWI - WS LALO LLOO OLLL LLLL |2 V|V|V|V|V|V|V|V]|V (03)40dd:zswwi-ws S ws4‘zewwi dNO4
{ews'xi=zws4{ ws'Al= w4 "ZWS "LWS XALO LOLO LOOL LLLL |€ V|V|V|V|V|V|V|V]|V (03)40d4 L WSH-zWS cwWsSH‘LwsH dWD4 | dINDA
{ug'zl=us4{ws'x}=ws4 -7-X “"US —— WS 0000 LOLO LLOL LLLL |¥ -l -l -| -|V|V|V|V]|V uSd4<-(ws4)ubs/L us4‘wsH 140S¥A
{ug*x}=usd “ug —- X000 LOLO LOOL LLLL |E -l -l -|-|V|V|V|V]|V usd<-(usd)ubs/L USd 1HOSY [LHOSHA
{ug'Zl=us4{ws'X}=ws4 -Z-X "US - WS 0110 00L0 LLOL LLLL |4 o e e e e e e usd<-(1-),WsH uS4'wsd 93N4
{ug'x}=us4 “Ug X110 0040 LOOL LLLL |€ o I e e e O e e us4<-(}-),us4 US4 93N4 | O3NS
{ug'Zl=us4{wsX}=ws4 -Z-X ""US - WS 0010 0040 LLOL LLLL |¥ e uSd<-lws4| usS4‘'ws4 sav4d
{us'X}=us4 “ug -~ X010 00L0 LOOL LLLL | VIV|V|V|V|VI|V|V|V uSd<-lus] usd4 Sgvd| sav4d
L>>{wpAl=wa4 “rZEWW Uy Wy LAOO LOLOOLLL LiLLL |2 -1 -1 -1 -1 -1 -1 -1 - [ud<-zewwi+uy(uy)powswi<-wad | (zewwi‘+1y)‘'wa4 AOWAH
L>>{wy' Al=wad T pgwwl Uy Wy LAOO LLOL LOLL LLLL |9 -1 - - -] -] - wekerrwwilxe uBis)ruy (uy)pgwew<-way | (FZwwi’+uy) ' wa4 AOWAS
L>>{wy' Al=wad QUM U WY LAOO LLOL LLOL LLLL | -1 -1 - -] -] -] - | wd-swwitxe uBis)+uy (udlowsw<-way | (gwiwi +uy) 'wa4 AOWAS
I>>{wAT=wad UM W) LAOO LLOL LOOL LLLL |E -1 -1 -1-1-1-1-1 -1 - usd<80000000%0+ud(uy)yowsw<-wad (+uy)'wad AOW4H
>>{UuyXJ=ua4d “ZEWWI —'u) "Wy X100 0010 0LLL bLLL |2 -1 -1 -1 -1 -] -] -] -] waczeww+wy ugd<{(we)yowsw | ug4‘(zeww! +wy) AOWAL
wy<-pgwwi(3xa ubis)+wy
L>>{u'X}=ua4 “pguwil -"ug Wy X100 0L0L LOLL LLLL |9 ol Bl e I I I B ‘ugd<-(wy)powew | ugd‘yzwwi‘+wy) AONS
wy<-gwuwi(ixa ubis)+wy
L>>{uX}=ua4 QUL Uy WY X100 0LOL LLOL LLLL | ol Bl e I I I B ‘ugd<-(wy)pyowew | ugd‘(gwwi‘+wy) AONS
L>>{uyXi=ug4d =up Wy X100 0L0L LOOL LLLL |€ -1 -1 -] -1 -1 -1 -] - | ws<-8000000%0+Wy ug-4<-{Wwy)owsw ug4(+wy) AOWAH
I>>{wpAl=was [ZEP WL — OALO LOLOOLLL LLLL |2 -1 -1 -7-1-17-1-1-+ (dS+zEp)yowaw<-wQg4 (dS‘zep)'wa4 AONA
I>>wiAl=wad | ¥ZP - —"WJ OALO LLOL LOLL LLLL |9 1 -1 -1 -1 -1 -1-1 -1 -[(dS+¥zp(xe oiez))powew<-wa4 (dS'vzp)'wa4 AOWA
L>>{WiAl=wad | e 8p - "W} OALO LLOL LLOL LLLL |1 1 -1 -1 -1 -1-1-71-] -](ds+8p(1xe 0i8z))yowsw<-wa4 (ds'sp)'wad AONW4
I>>{WFAl=wad —— W OALO LLOL LOOL LLLL | -1 -1 -7 -1T-17-1-1- (dS)yowesuw<-wua4 (dS)'wad AOWA
I>>{wyAl=was [ZEP U ~WIOA00 LOLOOLLL LLLL |2 - -T-1-7T-1-1-1- (uy+zep)yowsw<-wa4S (ud'zep)'wad AONA
L>>{wpAf=wgd | e $2p Uy -"Wi 0A00 LLOL LOLL LLLL |9 -1 -1-1T-1 -1 -1-1-1 -[(ud+pzp(ixe ubis))yowaw<-wq4 (ud'yzp)'wad AONWA
I>>wpAl=wad | 8p Uy WL OA00 LLOL LLOL LLLL |1 1 -1 -1 -1 -1 -1-71-1 -] (ud+8p(ixe ubis))yowaw<-wg4 (uygp)'wa4 AOWA
{wrz=wa4 -Z--wyuy Y LLLO LOLO LLOL LLLL ¥ N R (I4+uy)yowswi<-wa4 (”d'ud)'wad AON4
I>>{WFAl=wa4 “ud -"WiOA00 LLOL LOOL LLLL |E -T-1-T-1T-T-1-1-1- (ud)yowsw<-wa4d (ud)'wad AON4
p>>{urx=uas | ZEP — W1 OALO LOLOOLLL LLLL |2 -T-1-T-1T-T-1-1-1- ugd<-(dS+zep)yowasw ug4(dszep) AONA
I>X{upxE=uvay | o ¥ZP -"Uy——X0L0 0LOL LOLL LLLL |9 =TT -1 -1-1T-1-1- udd<-(dS+¥2Zp)yowsw ugd'(dsS'vep) AONWd
i>>{urxi=uas [8P -Ul—X0L0 0LOL LLOL LLLL ¥ 11717 -T-1-1-1-+ ugd<-(dS+8p)yowaw ugd'(ds'sp) AONWA
I>>{Urxj=ua4 ~U}— X0L00LOL LOOL LLLL | 11T - -T-1-1-1-+ ugd<-(dS)yowasuw ugd(ds) AOWA
R ¢ = Ta = I I ZSP -Ul "Wy X000 00LOOLLL LLbL |2 I EEEEEE ugd<-(wy+zep)yowaw ugd(wyzep) AONA
pS>Sax=uad [- ¥ZP —'Uy "Wy X000 0L0) LOLL LLLL |9 =1 -T =11 -7T-1T-1-71- ugd<-(wy+yzgp)yowsuw ug4(wy'v¥2p) AONL | AONA
823
9JON ap0) aulyodep %oou_m__mm_ww_w__._ el _mmww_on_umm_N_m> uonetado oluowaup dnous

13S NOILONYLSNI S3I43S IC0ENIN

373

INSTRUCTION SET

Chapter4 APPENDIX

On_CA-wN_mmUOO+On_,®w_®
‘Odu<-(gp(xe ubis))+0d

...... 8P 0LLO LOLL 00OL LLLL | -l - - -] - -] - - - (1=n)4I I2ge| ongd
On_CAan_WQUOO+On_,®w_®
‘Odu<-(gp(ixe™ ubis))+0d
...... 8P 10L0L0LLO00LbLLLIE | - = =) -] |- -] -]~ (1=310}=7)I 1°9€l 3784
DduU<-9z1S8poD+9Od‘es|e
‘Odu<~(gp(1xe~ubis))+Od
...... gpoototortooob bbbble | -l -l o] (L=7)4I loqe|] 1794
‘NdU<-9ZIS9p0D+Id‘es|e
‘Odu<~(gp(1xe"ubis))+0d
...... 8P1L001L0LLO00L bLLLE | <[| = -| = - |||~ (1=3401=9)4I loge| 3994
‘NdU<-9ZIS9p0D+Dd es|e
‘0du<-(gp(ixe” ubis))+0d
...... gpoLootobbooob Libkle | - - - -] -] -] -] -] - (1=0)dI 1oqe| 1984
‘0dU<-9ZIS9p0D+Dd‘es|e
‘0du<-(gp(ixe™ ubis))+0d
...... 8P 1000 LOLLOOOL LLLL|E | = - [-] | - [-] - (1=0401 =110} =) 1°qel 3INa4
DdU<-8ZIS8p0D+Ddos|e
...... 8P 0000 LOLLOOOL bLLL|E | - - - - |- 1 -] ‘Odu<<{(8p(xs ubis))+Od (L=3)I leqe| 0384 | 0044
(5 Tpus 7= Tus 7w Tus =pus VZAX €WS ZWS WS USLO LOOL LLOLLLLL|Y | - | -] -| | V|V |V |V]V US<-(EWST-(ZWSH,LWS4)-) | USHEWSITWSS | WSS NSNS BNSINNS
i s Zeusy s T s o] VZAX EWS ZWS WS US00 100k Lob LLLL [y [- [- [[[V [V[V][V][V] Usd<-(ewsd+(cwsSd,|WS4)-) [USIEWUSITWSSIWS] AQVNA [0avANd
[T 750 s =20 T s VZAX ‘€WS WS WS USL0 000L L1O) LLLL |77 - -T-T-1v]v]v]v]Vv uSd<-(cws4-(ZwsH,1WSH)) | uSq'cwsS4ZWSS LwS49NSNE BNSING
(50 s s us w1 T =huss VZAX €WS ZWS "LWS US00 000L LLOL LLLL|Y | | -] - - [V [V [V]V]V USH<-(EWSH+(ZWSH, | WSH)) | USTEWSSZWSSIWSIaAvIN [Aavin
{usX}=usI{ws A}=ws TZEWWI US TWSXALO LLLOOLLL LLLL|Z | | - -] -V [V [V]V]V USd<-zewwywsd | usdwsdzeww! Aldd
US 7S WS NS Y= iS4 ZAX "US WS LWS 00L0 LLLOLLOL LLLL Y | -] - | 7| TV |V [V][V][V USJ<-lWSH/gWsd | uS4zwsd’Lwsd Ald4
{us"X}=usI{ws A}=ws “USTWSXALOLLLOLOOL LLLLlE | | - -] -V [V|V]V]V usd<-ws4/us4 usd'wsd AId4| AIdS
{usXt=us3{ws AJ=ws4 ZEWWI TUS TWS XA00 LLLOOLLL LLLL[Z | | - - -V [V [V][V]V USd<-zeWwl,WsH | UsJ'wsd'zewwi NN
IS 7RIS TS N=gUS (WS YIS 5 -ZAX "US TWS LWS 0000 LLLOLLOL LLLL]Y | | | | S|V [V |V [V|V US4<-gWsd.lWsd | usdzusd’lwsd TN
{USXI=US3 WS AT=WSS “USTWSXA00 LLLOLOOL LkbL(E | - | - | -| " [V [V [V [V]V usd<-usd.Ws4 uS4'WS4 TNINE | TNIN
[USXJ=uS I TWS AJ=WSS TZEWW! US "WS XALOOLLOOLLL LLLL L | | | | - | V|V | V]| V]V USd<-gewwi-wsd | Usd'wisdzewwr gnsd
IS Z=Us TS NS AT IS Y= S ZAX "US TWS LWS 00L00LLO LLOL LLLL|Y | | | | -| V[V | V[V][V USd<-lWS4-gwsd | Uusdewsd'lwsd ansd
{USX}=uS WS AJ=WSH “US WS XALOOLLOKOOK LLLL|E | - | -] -] - | V[V [V [V[V US4<-WS4-Us usJ'wsd gns4| ansd
s25[n
9JON 9p0YD aulIydep a0 m_hw_u”_uw_w__._ el _mmww_om_umm_N_m> uonesado oluowaup dnous

13S NOILONYLSNI SIS 3C0LNIN

INSTRUCTION SET

374

Chapter4 APPENDIX

10101011 0000 LLLL

Odu<-1+0d‘esie
‘Odu<-p-¥v1'(1=3401=T1)4I

3714

001010110000 bLLL

Odu<-1+0d‘esid
‘Odu<-p-dv1(L=1)4l

1714

110010110000 LLLL

Odu<-1+0d‘ese
‘Odu<-p-¥v1'(1=3101=9)4|

3974

010010110000 LELL

Ddu<-1+0d‘es|®
‘Odu<-p-¥v1(1=9)4I

19714

100010110000 bLLY

Ddu<-1+0d‘es|®
‘Odu<-p-yy1(1=910L="T110L=N)|

aNT4

0000 1011 0000 LELL

Ddu<-1+0d‘es|®
‘Odu<-p-dv1(L=3a)4

0314

00714

...... 8P LOLL LOLL 000L LILL

DdU<-9z1S89poD+Dd‘es|e
‘Odu<-(gp(xe™ ubis))+0d
(1=3101=n)4

[°9el 3Ng4d

...... 8P00LL LOLL 000L LILL

DdU<-9Z1S8apoD+Dd‘es|e
‘Odu<-(gp(Ixe™ ubis))+0d
(1=340L="H0L=N)4

[°9el 37Ngd

...... 8P 1101 LOLL 000L LELL

DdU<-9Z1S8apoD+Dd‘es|e
‘Odu<-(gp(1xa~ubis))+0d
(1=1HoL=n)4

[8qel 1N4g4d

...... 8P0L0L LOLL O0OL LELL

)DdU<-8ZIS8p0d+Ddes|e
‘Odu<-(gp(1xa~ubis))+0d
(1=3401=9101=n)|

[8qe| 35Nn4d4d

...... 8P 100 LOLL 000L LILL

DdU<-9ZI1Sep0D+)d‘as|e
‘Odu<-(gp(Ixe~ ubis))+0d
(1=9401=n)4

[99el ONgd

...... 8P 0001 LOLL 000L LLLL

Ddu<-9zI1S9poD+)d es[e
‘Odu<-(gp(Ixe™ ubis))+0d
(1=9d0L=310L=T)4|

[°qel 937194

...... 8P 1110 10OLLO0OL LELL

Ddu<dzISepo)+)dos|e
‘Odu<-(gp(1xe~ ubis))+0d
(1=9d01=T)4|

[ege| 971494

2044

apoD auIyoep

oS

PPOD

4n43bola1

41 HnHoHZHA

Bel4 004

Bel4 03

uonetado

OlUOWBUA

dnous

13S NOILONYLSNI S3I43S IC0ENIN

375

INSTRUCTION SET

Chapter4 APPENDIX

Odu <-L+0d‘es|e

LOLL LOLL 0000 LLLL |2 ol el el e e e e O ‘Odu<-p-dv1(L=340L=N)4I 3nTd
Odu <-L+0d'es@
004} LOLL 0000 LLLL |2 -1 - - - -]] - - [fodu<-p-dv(L=3d0L=T10L=N) 4| 37N74
ddu <-lL+Dd'es|e
L1OL LOLL 0000 LLLL |2 ol Bl et el e e e e ‘Odu<-p-yv1(L=140L=N)4I N4
DdU <-1+Jd'@s®
0LOL LOLL 0000 LLLL |2 -l -l -] -] -] - [odu<-p-av(L=340L=DJ0L=N)4] IoN14
DdU <-L+Jd'8s®
L0OL LOLL 0000 LLLL |2 ol R Al B A N B B ‘Odu<-p-¥y1(1=0101=N)| on14
JduU <-1+0desIe
000} LOLL 0000 bLLL |2 -1 -l - -] -] - - [odusp-av(L=9do =340 =) 93714
Odu<-1+0d'8s|e
LLLO LOLL 0000 LLLL |2 ol B il B A R Bl el ‘Odu<-p-dv1(L=0101=T)4| 9714
Odu<-1+0d'8s|e
0L10 }0LL 0000 bLLL |2 ol B B B B B B B ‘Odu<--¥v1(L=N)dI on14|9914
92S inl43H941/41 HnHoHZHA g
8apoD auIyoep apoy| BBl D0 BelJ o3 uonetado OIUOWBUIN dnoio

13S NOILONYLSNI SIS 3C0LNIN

INSTRUCTION SET

376

MN103E SERIES INSTRUCTION MAP

Chapter4 APPENDIX

1st Byte
Lower 0 1 2 3 4 5 6 7 8 9 A B C D E F
Upper CLR MoV MOVBU | MOVHU CLR Mov MOVBU | MOVHU CLR Mov MOVBU | MOVHU CLR Mov MOVBU | MOVHU
0 DO |D0,(abs16)D0,(abs16)D0,(abs16) D1 |D1,(abs16)D1,(abs16)D1,(abs16)| D2 P2,(abs16)D2,(abs16)D2,(abs16) D3 [D3,(abs16)P3,(abs16)[D3,(abs16)
1 EXTB Dn EXTBU Dn EXTH Dn EXTHU Dn
2 ADD imm8,An MOV imm16,An ADD imm8,Dn MOV imm16,Dn
3 MOV (abs16),Dn MOVBU (abs16),Dn MOVHU (abs16),Dn MOV SP,An
4 | o | % |owssehoiese| b1 | A pusssejaiese| b2 | A2 basspaese| D5 | A boidaseaise)
5 INC4 An ASL2 Dn MOV (d8,SP),Dn MOV (d8,SP),An
6 MOV Dm,(An)
7 MOV (Am),Dn
8 MOV Dm,Dn (m=n:MOV imm8,Dn)
9 MOV Am,An (m=n:MOV imm8,An)
A CMP Dm,Dn (m=n:CMP imm8,Dn)
B CMP Am,An (m=n:CMP imm8,An)
o (o[[[[t [[[[2 [Tvoe Lt s e 2
D | LLT | LGT | LGE | LLE | LCS | LHI | LCC | LLS | LEQ | LNE | LRA [SETLB|) | @re) |RETF| RET
E ADD Dm,Dn
F 2 byte code 462{}: 3 byte code 4 byte code 6 byte code 7625': PI
FO (2 byte Code)
2nd Byte
Lower 0 1 2 3 4 5 6 7 8 9 A B C D E F
Upper
0 MOV (Am),An
1 MOV Am,(An)
2 MOV USP,An MOV SSP,An MOV MSP,An MOV PC,An
3 |anuse|nosselaomse| | atuse|atsse|atsel | aouse|azsse|ewse| | ayyse| aasse|aams
4 MOVBU (Am),Dn
5 MOVBU Dm,(An)
6 MOVHU (Am),Dn
7 MOVHU Dm,(An)
8 BSET Dm,(An)
9 BCLR Dm,(An)
A
B
C
D |FLEQ|FLNE | FLGT |FLGE | FLLT | FLLE |FLUO| FLLG |FLLEG| FLUG |FLUGE| FLUL |FLULE| FLUE
E SYSCALL imm4
F CALLS (An) | JMP (An) | RETS| RTI | TRAP)

INSTRUCTION MAP

377

Chapter4 APPENDIX

MN103E SERIES INSTRUCTION MAP

F1 (2 byte Code)

2nd Byte
Lower 0 1 2 3 4 5 6 7 8 9 A B C D E F
Upper
0 SUB Dm,Dn
1 SUB Am,Dn
2 SUB Dm,An
3 SUB Am,An
4 ADDC Dm,Dn
5 ADD Am,Dn
6 ADD Dm,An
7 ADD Am,An
8 SUBC Dm,Dn
9 CMP Am,Dn
A CMP Dm,An
B
C
D MOV Am,Dn
E MOV Dm,An
F
F2 (2 byte Code)
2nd Byte

Lower 0 1 2 3 4 5 6 7 8 9 A B C D E F
Upper

0 AND Dm,Dn

1 OR Dm,Dn

2 XOR Dm,Dn

3 NOT Dn

4 MUL Dm,Dn

5 MULU Dm,Dn

6 DIV Dm,Dn

7 DIVU Dm,Dn

8 ROL Dn ROR Dn

9 ASL Dm.Dn

A LSR Dm,Dn

B ASR Dm,Dn

C

D EXT Dn

E MOV MDR,Dn MOV PSW,Dn MOV EPSW,Dn
3 I P = e R g M P R M e

378 INSTRUCTION MAP

MN103E SERIES INSTRUCTION MAP

F3 (2 byte Code)

2nd Byte
Lower 0 1

Chapter4 APPENDIX

Upper
0

N

MOV (Di,Am),Dn

MOV Dm,(Di,An)

MOV (Di,Am),An

M m g O W > © o N o o »h w N

MOV Am,(Di,An)

F4 (2 byte Code)

2nd Byte
Lower 0 1

Upper
0

—_

MOVBU (Di,Am),Dn

MOVBU Dm,(Di,An)

MOVHU (Di,Am),Dn

M m O O W >» © o N o a M w N

MOVHU Dm,(Di,An)

c D E
C D E
INSTRUCTION MAP

379

Chapter4 APPENDIX

MN103E SERIES INSTRUCTION MAP

F5 (2 byte Code)
2nd Byte
Lower 0O 1 2 3 4 5 6 7 8 9 A B
Upper

0

1 MOV Am,Rn
2

3

4

5 MOV Dm,Rn
6

7

8

9 MOV Rm,An
A

B

C

D MOV Rm,Dn
E

F

F6 (2 byte Code)

2nd Byte

Lower 0 1 2 3 4 5 6 7 8 9 A B
Upper

0 UDF00 Dm,Dn (MULQ Dm,Dn)

—_

UDF01 Dm,Dn (MULQU Dm,Dn)

UDF02 Dm,Dn (MCST32 Dn/MCST16 Dn/ MCST8 Dn)

UDF03 Dm,Dn (MCST9 Dn)

UDF04 Dm,Dn (SAT16 Dm,Dn)

UDF05 Dm,Dn (SAT24 Dm,Dn)

UDF06 Dm,Dn (MCST48 Dn)

UDFO07 Dm,Dn (BSCH Dm,Dn)

UDF08 Dm,Dn (SWAP Dm,Dn)

UDF09 Dm,Dn (SWAPH Dm,Dn)

UDF10 Dm,Dn

UDF11 Dm,Dn

UDF12 Dm,Dn (GETCHX Dn)

UDF13 Dm,Dn (GETCLX Dn)

UDF14 Dm,Dn

M m O O W » © oo N o o »~ w N

UDF15 Dm,Dn (GETX Dn)

380 INSTRUCTION MAP

Chapter 4 APPENDIX

MN103E SERIES INSTRUCTION MAP

uy‘(pwwi‘+ury) : gpuesado

ZUy‘pwwil’ Luy‘pywwl : puetado

ZUY‘pwwl Luy‘Lwy : gpuesado

Zuyzwy LUy ‘pyww : gzpuesado

Zuy‘zwy‘Luy‘Lwy : Lpuesado
Gpuesado
927" AON
gpuesado | gpuesedo | gpuesado | gpuesedo | gpuesado | gpueledo | ppuesedo | ppuesedo | ppuesedo | ppuesedo | gpuelsedo | gpuesado | gpuelsedo | gpuesado
ISV OLLYS | ISV HO |TISY MHMS | ISV HOX [1SY HOVINA| ISV ANV | 1SV AOW | 1SV 9NS | ISV dIND | ISV aav | 1SV AOW | 1SV 9Nns | ISV dND | ISV aav
Lpuesado | Lpuesado | Lpuesado | ppuesado | Lpuesado | Lpuesado | gpuesado | gpuesado | gpuesado | gpuesado | Lpuesado | Lpuesado | Lpuesedo | Lpuesado
ISV OLLYS | ISV HO |ISV MHMS | ISV dOX [1SY HOVINAQ| ISV ANV | 1SV AON | 1SV 9NS | ISV dIND | ISV aav | 1SV AOW | 1SV aNns | ISV dD | ISV aav
gpuesado | gpuesado | gpuesado | gpueledo | gpuesado | gpueledo | ppuesedo | ppuesedo | ppuesedo | ppuesedo | gpuelsedo | gpuessdo | gpueledo | gpuesado
HST9LLYS | HST HO [¥ST MHMS| ¥ST HOX [¥ST HOVIAQ| ¥ST ANV | ST AOW | ¥ST7 9NS | ST dWD | ¥ST7 aav | ¥ST AOW | ¥ST 9NS | ¥ST dWD | ¥S1 aav
Lpuesado | Lpuesado | Lpuesado | Lpuesado | Lpuesado | Lpuesado | gpuesado | gpuesado | gpuesado | gpuesado | Lpuesado | Lpuesado | Lpuesedo | |puesado
UST9LLYS | UST "O [dST MHMS| ¥ST HOX [¥ST HOVIAQ| ¥ST ANV | ST AOW | ¥ST dNS | ¥ST dIND | ¥ST dav | ¥ST AON | ¥ST 9NS | ¥ST dWO | ¥ST aav
gpuesado | gpuesedo | gpuesado | gpueledo | gpuesado | gpueledo | ppuesedo | ppuesedo | ppuesedo | ppuesedo | gpuelsedo | gpuessdo | gpuesedo | gpuesado
HSY 9LLVS | HSY HO [¥SY MHMS| ¥SY HOX [¥SV HOVAA| ¥SY ANV | SV AOWN | ¥SV 9NS | ¥SV dWD | SV aaV | 4SY AOW | ¥SV 9NS | ¥SVY dWD | ¥SVY aav
Lpuesado | Lpuesado | Lpuesado | Lpuesado | Lpuesado | Lpuesado | gpuesado | gpuesado | gpuesado | gpuesado | Lpuesado | Lpuesado | Lpuesedo | Lpuesado
USV 9LLVS| HSV HO [¥SV MHMS| ¥SVY HOX [¥SV HOVAQ| ¥SY ANV [¥SY AOW | ¥SV 9NS | SV dIND | ¥SVY Aav | ¥SY AOW | ¥SVY NS | ¥SY dIND | ¥SVY aav
gpuesado | gpuesedo | gpuesado | gpueledo | gpuesado | gpueledo | ppuesedo | ppuesedo | ppuesedo | ppuesedo | gpuesedo | gpuessdo | gpuesedo | gpuesado
AOW 9LLYS| AON"HO |AON~MHMS| AOIN~HOX [AOW HOVINA| AOIN~ ANV | AOIN~AOW | AOW ENS | AOW dIND | AOW aav |AON AOW | AOW ENS | AOW dNO | AOW aav
Lpuesado | Lpuesado | Lpuesado | ppuesado | Lpuesado | Lpuesado | gpuesado | gpuesado | gpuesado | gpuesado | Lpuesado | Lpuesado | Lpuesado | |puesado
AON™9LLYS| AON HO |AON”MHMS| AOIN HOX [AOW HOVYINA| AOIN™ ANV | AOIN~AOWN | AOW ENS | AOW dINO | AOW aav |AON AOW | AOW ENS | AOWN dND | AOW aav
gpuesado | gpuesado | gpuesado | gpuesado | gpuesado | gpuesado | ppuesado | ypuesado pypuetado | gpuesado | gpuesado ¢puelado
dNDOT9LLVS| dIND HO [dND”MHMS| dIND HOX dAD HOVIAG dIND™ ANV |dINO™ AOW | JND ™ ENS dNOaav |dWO AOW | dND ans dNOaav
Lpuesado | Lpuesado | [puesado | Lpuesado | Lpuesado | Lpuesado | gpueisado | gpuesado Zpueisado | Lpuesado | Lpueisado Lpueiado
dND 9LLVS| dIND HO |[dND MHMS| dND JOX dWO HOVING dIND™ ANV | dINO AOIW | dIND NS diND aav [dND AON | dWD 9nsS dWND aav
gpuesado | gpuesado | gpuesado | gpuesado | gpuesado | gpuesado | ppuesado | ppuesado | ppuesado | ppueledo | gpuelsado | gpuelsado | gpuesado | gpuesado
gNs 9LLYS | NS HO [gNS MHMS| gNS™dOX [gNS HOVINGl gNS™ ANV | 9NS AOW | aNS™9NS | aNS dND | NS dav | g9NsS AOW | gNS NS | 9NS dWO | gns aav
Jpuesado | Lpuesado | Lpuesado | Lpuesado | Lpuesado | Lpuesado | gpuesado | gpuesado | gpuesado | gpuesedo | Lpuesado | Lpuelado | Lpuesado | Lpuesado
aNs 9LLYS| NS WO |8NS MHMS| gNS ¥OX [gNS HOVING| NS ANV | 9NS”AOW | NS~ NS | NS dND | NS~ Aayv | aNsS”AOW | NS~ 9ns | aNsS dWD | ans™aav
gpueisado | gpuesado | gpuesado | gpuesado | gpuesado | gpuesado | ppuesado | ppuesado | ppueledo | ppueledo | gpuelado | gpuelsado | gpuesado | gpuesado
aav 9oLlys| aav "0 (aav MHMS| aav ¥O0X [dav HOVIAQl adv dNV | aav AOW | aav gns |adv diNO | aavy aav (aav AOW | adv gNns | aav dwo | aav aav
Jpuesado | Lpuesedo | Lpuesedo | Lpuesado | Lpuesedo | Lpuesado | gpuesado | gpuesado | gpuesado | gpuesado | Lpuesado | Lpuesado | Lpuesado | Lpuelado
aav 9Llvys| aav "0 (aav MHMS| aav ¥O0X [ddv HOVIAQl adv dNV | aavy AOW | aav gns |advy diNO | aavy aav [aadv AOW | adv™ €gns | aav dwo | aav aav

a 0] d A\ 6 8 yA 9 g 14 € 4 l 0

0

Jaddn
JaMo

a1kg puz

(spoo aha v) 24

381

INSTRUCTION MAP

Chapter4 APPENDIX

MN103E SERIES INSTRUCTION MAP

F8 (3 byte Code)
2nd Byte
Lower 0 1 2 3 4 5 6 7 8 9 A B C D E F
Upper
0 MOV (d8,Am),Dn
1 MOV Dm,(d8,An)
2 MOV (d8,Am),An
3 MOV Am,(d8,An)
4 MOVBU (d8,Am),Dn
5 MOVBU Dm,(d8,An)
6 MOVHU (d8,Am),Dn
7 MOVHU Dm,(d8,An)
8
MOVBU | MOVHU MOVBU | MOVHU MOVBU | MOVHU MOVBU | MOVHU
9 DO,(d8,SP)[DO,(d8,SP) D1,(d8,SP)|D1,(d8,SP) D2,(d8,SP)|D2,(d8,SP) D3,(d8,SP)|D3,(d8,SP)
A
B MOVBU (d8,SP),Dn MOVHU (d8,SP),Dn
. . . MOVM MOVM
C ASL imm8,Dn LSR imm8,Dn ASR imm8,Dn (USP).regs|regs,(USP)
FBEQ | FBNE | FBGT | FBGE | FBLT | FBLE | FBUO | FBLG | FBLEG | FBUG [FBUGE| FBUL | FBULE | FBUE
D (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC)
. . BVC BVS BNC BNS .
E AND imm8,Dn OR imm8,Dn (d8,PC) | (d8,PC) | (d8,PC) | (d8,PC) BTST imm8,Dn
ADD
F MOV (d8,An),SP MOV SP,(d8,An) 8.5
F9 (3 byte Code)
2nd Byte
Lower O 1 2 3 4 5 6 7 8 9 A B C D E F
Upper,
MOV | AND MOV | MAC
0 UDF00 imm8,Dn (MULQ imm,Dn) Rm,Rn | Rm,Rn |(Rm),Rn| Rm,Rn
EXT OR MOV | MACU
1 UDFO01 imm8,Dn (MULQU imm,Dn) Rn Rm,Rn [Rm,(Rn)| Rm,Rn
FMOV FMOV FMOV FMOV EXTB | XOR |[MOVBU| MACB
2 (Rm),FSn (Rm+),FSn (SP),FSn Rm,FSn Rn Rm,Rn |(Rm),Rn[Rm,Rn
FMOV | FMOV | FMOV | FMOV | FMOV | FMOV | FMOV | FMOV | EXTBU | NOT |MOVBU|MACBU
3 FSm,(Rn)[FSm,(Rn+) FSm,(Rn)|FSm,(Rn+)|FSm,(SP)[FSm,Rn |[FSm,(SP)| FSm,Rn Rn Rn [Rm,(Rn)| Rm,Rn
FMOV FABS FNEG EXTH | ASR [MOVHU| MACH
4 FSm,FSn FSn FSn Rn Rm,Rn [(Rm),Rn| Rm,Rn
FRSQRT FSQRT FCMP EXTHU| LSR |MOVHU|MACHU
5 FSn FSn FSm1,FSm2 Rn Rm,Rn |Rm,(Rn)| Rm,Rn
FADD FSUB CLR ASL MOV |DMACH
6 FSm,FSn FSm,FSn Rn Rm,Rn |(Rm+),Rn[Rm,Rn
FMUL FDIV ADD | ASL2 | MOV |DMACHUY
7 FSm,FSn FSm,FSn Rm,Rn Rn Rm,(Rn+) Rm,Rn
ADDC | ROR | MOV |DMULH
8 RmRn | Rn_[(SP).Rn| RmRn
SUB ROL MOV [DMULHU
9 RmRn | Rn _|[Rm,(SP)| RmRn
FMOV FMOV FMOV DCPF DCPF | SUBC | MUL [MOVBU| SAT16
A (Rm),FDn (Rm+),FDn (SP),FDn (Rm) (SP) | Rm,Rn | Rm,Rn | (SP),Rn| Rm,Rn
FMOV | FMOV | FMOV | FMOV | FMOV | FMOV | FMOV | FMOV | INC | MULU |MOVBU|MCSTE
B FDm,(Rn)|FDm,(Rn+) FDm,(Rn)|FDm,(Rn+)[FDm,(SP)|Rm,FPCR|FDm,(SP)|[FPCR,Rn| Rn Rm,Rn |Rm,(SP)| Rm,Rn
FMOV FABS FNEG INC4 DIV |MOVHU| SWAP
Cc FDm,FDn FDn FDn Rn Rm,Rn | (SP),Rn| Rm,Rn
FRSQRT FSQRT FCMP CMP | DIVU | MOV |SWAPH
D FDn FDn FDm1,FDm2 Rm,Rn Rn [Rm,(SP)| Rm,Rn
FADD FSUB MOV MOVHU | SWHW
E FDm,FDn FDm,FDn XRm,Rn (Rm+),Rn[Rm,Rn
FMUL FDIV MoV MOVHU| BSCH
F FDm,FDn FDm,FDn Rm,XRn Rm,(Rn+)] Rm,Rn
382 INSTRUCTION MAP

MN103E SERIES INSTRUCTION MAP

Chapter4 APPENDIX

FA (4 byte Code)
2nd Byte
Lower 0 1 2 3 4 5 6 7 8 9 A B C D E F
Upper

0 MOQV (d16,Am),Dn
1 MOV Dm,(d16,An)
2 MOV (d16,Am),An
3 MOV Am,(d16,An)
4 MOVBU (d16,Am),Dn
5 MOVBU Dm,(d16,An)
6 MOVHU (d16,Am),Dn
7 MOVHU Dm,(d16,An)

MOV MOV MOV MOV
8 |n0,(abs16) IA1,(abs16) A2,(abs16) A3,(abs16)

MOV MoV MOVBU | MOVHU MOV MOV MOVBU | MOVHU MOV MOV MOVBU | MOVHU MOV MOV MOVBU | MOVHU
9 |a0,(d16,5P)|D0,(d16,5P)| DO,(c16,5P)|D0,(d16,5P) | A1,(d16,5P)|D1,(d16,5P) D1,(d16,5P) D1,(d16,5P)| A2,(d16,5P) |D2,(d16,5P) [D2,(d16,5P)| D2,(d16,5P) |A3,(d16,5P) |D3,(d16,5P) | D3,(d16,5P)|D3,(d16,5P)
A MOV (abs16),An
B MOV (d16,SP),An MOV (d16,SP),Dn MOVBU (d16,SP),Dn MOVHU (d16,SP),Dn
C ADD imm16,Dn CMP imm16,Dn
D ADD imm16,An CMP imm16,An
E AND imm16,Dn OR imm16,Dn XOR imm16,Dn BTST imm16,Dn

. . . AND OR ADD CALLS
F BSET imm8,(d8,An) BCLR imm8,(d8,An) BTST imm8,(d8,An) |mmt6psw|mmtepsw|imm16,5P| (d16,PC)
INSTRUCTIONMAP 383

Chapter4 APPENDIX

MN103E SERIES INSTRUCTION MAP

pYuy Wy (guuwi+uy)‘ury uyx‘guiul ua4'zwa4‘wad ug4Zwa4wad|
HOSg NHAOW NOW Ala4 TN
Uy (g +wy) | UY‘guiwl ua4‘zwad'lwa4 uQ4'zwad‘iwa4
NHAOW 1s1d ans4 aav4d
(uy1y) wy (dS‘gp)wy uy‘guiw ug4‘wad ua4‘wad
NHAOW NHAOW dino 140sA IRS[OISSE
uy(wy'ry) uy‘(ds‘sp) ug4‘wad ug4‘wad
NHAOW NHAOW 93Nd sav4d
(Ud1d) Wi [zpy' Py Uy wy uy‘guiul |(dS'gp)‘wy | uy‘gwwl (ds‘gp)'wad (dS‘8P)‘wad |(gwuwr'+uy)'wa4| (Uy‘gp)‘wad |(guwr+uy)wad| (uy‘sp) wad
NgAONW NN 31SON | NEAOW NN AOWA AOWA NOW4 AOWA AOWA NOW4
uy‘wy Uy (W) [zpy ey uywy| PYUY Wy uy(ds'sp) | uy'swwl | uy'gwwl | (wy'gp) | (wy') ua4‘(ds'sp) ug4'(guiwir‘+wy) ug4‘(wy'gp)
IZANTS NgAONW TN odns NIAOW N o4ans 4404 4d0a AOWA NOW4 NOWA
Zoy' Ly Uy wy| (UNTY) Wiy Py Uy wy (ds'gp)'wy uy‘guiwl
NHINNG NOW ans AOW ans USH'eWSH‘ZWSH L WSS aNSINNA USH'eWSH'ZWSH L WS4 AdvANA
Zoy' 1Py Uy wy| Uy (W) py‘uy‘wy uy‘(ds‘sp) uy‘guiw
H1INWa NOW oaav NOW oaav USH'eWSH‘ZWSH L WSS NS USH‘cWSH'ZWSH L WS4 aavind
pyuy‘wy py‘uy'wy (guuwir'+uy)‘wy uy‘guiwl US'7WSS' WSS us4'7Ws4 | ws4
NHOVING aav NOW aav Ala4 TN
pyuy‘wy py‘ud‘wy Uy (guiwr+wy) | Uy ‘guiwl US'7WSS WSS US4 WS4 ws4
HOVING IsvY NOW IsvY ans4 aav4d
2oy Py Uy wy| (8sge)'wy | py‘uY Wy uy‘guiwl | (uy'gp)wy | uy‘gwwl (uy'y)'wa4d | US4‘wsH us4‘wsH us4‘wsH us4‘wsH
NHOVIN | NHAOW SISy NHOVN | NHAOW ysT NOWA4 401a 140s4 aold IRS[OISEE
oy Py Uy wy| UY'(8STE) | pY‘uy‘wy uy‘guiuwl |uy‘(wy‘gp) | uy‘gwwl ugd'(wy'ry) | Us4‘wsH us4‘wsd us4‘wsH us4‘wsH
HOVIN NHAOW ysy HOVIN NHAOW ysy AOWA 93N4 sav4 4011 1014
py‘uy‘wy | (gsqe)‘wy uy‘guiw | (uy'gp)‘wy (uy'rd)' wsH | (dS'sp)'wsH (dS*8P) WS |(guuwi’+uy)'wsH | (Uy‘gpP) WS |(uir'+uy) wS4| (Uy‘gp) WS4
NGOVIN | NIAOW NgOvVIN | NIAOW AOWA NOWA AOWA NOW4 AOWA AOWA NOW4
py‘uy‘wy | uy‘(gsae) | pyuy‘wy uy‘guiuwl |uy(wy'gp) | uy‘gwwi US4 (wy'ry) us4(ds‘sp) usH'(guiw’+wy) usH'(wy‘gp)
9OVIN NIAON HOX a0V NAIAON HOX NOWA NOWA NOWA NOWA4
oy Py Uy wy| (8SAB)‘WY | Py Uy Wy uy‘guiwl | (uy'gp)wy | uy'gwwl | uy‘guiw (u@'wwr NOINW)
NOV NOW (e} NOVA NOW Ho NAOW uggLwwi 1L04an
oy Py Uy ‘wy| UY'(8sqe) | pyuy'wy uy‘guiwl |uy(wy'gp)| uy'gwwl | uy‘guiw (u@‘'wwr OINN)
OVIN NOW aNvy OVIN NOW aNvy NOW ug‘gLwwi 004dn
4 3 a 0 <! A 6 8 L 9] 14 € 4 l 0

0

Jaddn
Jamon

a)kg pug

(epoo ahq) g4

INSTRUCTION MAP

384

MN103E SERIES INSTRUCTION MAP

Chapter4 APPENDIX

FC (6 byte Code)
2nd Byte
Lower O 1 2 4 5 6 7 8 9 A B C D E F
Upper
0 MOV (d32,Am),Dn
1 MOV Dm,(d32,An)
2 MOV (d32,Am),An
3 MOV Am,(d32,An)
4 MOVBU (d32,Am),Dn
5 MOVBU Dm,(d32,An)
6 MOVHU (d32,Am),Dn
7 MOVHU Dm,(d32,An)
MOV MOV MOVBU | MOVHU MOV MOV MOVBU | MOVHU MOV MOV MOVBU | MOVHU MOV MOV MOVBU | MOVHU
8 | A0,(abs32)| Do (abs32) | DO,(abs32)| DO,(abs32) | A1,(abs32) | D1,(abs32) | D1,(abs32) | D1,(abs32) | A2, (abs32) | D2,(abs32) | D2,(abs32) | D2,(abs32) | A3(abs32) | D3,(abs32)| D3,(abs32) | D3,(abs32)
MOV MOV MOVBU | MOVHU MOV MOV MOVBU | MOVHU MOV MOV MOVBU | MOVHU MOV MOV MOVBU | MOVHU
9 A0,(d32,SP)|D0,(d32,SP)D0,(d32,SP)|D0,(d32,SP)[A1,(d32,SP)| D1,(d32,SP)[D1,(d32,SP) (D1,(d32,SP)| A2,(d32,SP) [D2,(d32,SP) |D2,(d32,SP)|D2,(d32,SP)|A3,(d32,SP) | D3,(d32,SP)(D3,(d32,SP) | D3,(d32,SP)
A MOV (abs32),An MOV (abs32),Dn MOVBU (abs32),Dn MOVHU (abs32),Dn
B MOV (d32,SP),An MOV (d32,SP),Dn MOVBU (d32,SP),Dn MOVHU (d32,SP),Dn
C ADD imm32,Dn SUB imm32,Dn CMP imm32,Dn MOV imm32,Dn
D ADD imm32,An SUB imm32,An CMP imm32,An MOV imm32,An
E AND imm32,Dn OR imm32,Dn XOR imm32,Dn BTST imm32,Dn
AND OR ADD CALLS
F imm32,EPSWjmm32,EPSWimm32,SP| (d32,PC)
INSTRUCTIONMAP 385

Chapter4 APPENDIX

MN103E SERIES INSTRUCTION MAP

mee_émv UMY Pzl
wy
NHAOW AOW
uy* Uy pzwwi
(Yowwi‘+wy) '
NHAOW 1sig
(dS'yzp)'wy Uy pzww
NHAOW dino
uy‘(ds‘vzp)
NHAOW
(dS'pzp) W Uy pguww; (ds rzp)waodd zewun (a5 vzp)wad E) (uvzpywasl Ty zpyway
NIAOW NN NOWA NOWA NOWA OIS NOWA OIS NOWAH
Uy (dS'vzp)| ud'vzwwl | uy‘pzwwl | (Wy'yZp) ua4‘(ds'vep) ug4‘(yeww' +wy) ua4‘(wy‘vep)
NIAOW NN 24ns 4doa NOWA NOWA NOWA4
(dS‘vzp)'wy uy‘yeww
NOW ans
uy“(ds‘vzp) uy'pguw
NOW oaav
(Pewwi'+uy) .
g uy‘pewwi
AOW aav
uy’ ¢
(pzww +wy) U peui
AOW sy
(yzsqe)‘wy uy‘peww (uy‘yzp)‘wy uy'ygwwl
NHAOW NHOVIN | NHAOW ysT
uy‘(yzsae) uy‘pgwwl Uy (Wwy‘yzp) uy'yewwl
NHAOW HOVIN NHAOW ysy
(vzsqe)‘wy uy‘pzww (uy‘yzp)‘wy (dS'¥zp)'ws (dS'¥zp)'ws4 me,”_cw_m_&mv (uy'yZp) WS4 Qmef_c:m_.u_é% (uy'vzp)' WS4
NIAOW NGOV | NIAOW NOWA NOWA AONA NOWA AON4 NOWAL
uy‘(yzsae) Uy peww Uy (Wwy‘yzp) uy‘pzwwl us4'(ds‘vep) US4 (Fzwiwi‘+wy) us4'(wy‘vyezp)
NAGAON qOvIN NAIAOW HOX NOWA NOWA NOWA4
(vzsqe)‘wy uy‘peww (Uy‘pzp)‘wy uy‘pzuwl | uy‘ygwu (u@‘wwr NOINW)
NOW NOV NOW Ho NAOW ug‘zeww! Londan
uy'‘(yzsae) Uy powwl Uy (Wy‘pzp) ud‘yewwi | uy‘ygww (u@‘'wwr OINN)
NOW OVIN NOW aNvy NOW ug‘zewwr 004dn
3 g v 6 8 L 9 S 14 € 4 l 0

0

Jaddn
Jamon

a)kg puz

(e8pop @hq 9) a4

INSTRUCTION MAP

386

Chapter4 APPENDIX

MN103E SERIES INSTRUCTION MAP

(Zewwr‘+uy) ‘
uny uyx‘zewuw
NHAON AON
' uy‘zZewwl
(zewwi'+wy) '
NHAOW 1sig
(ds‘zep)'wy uy‘zewwi
NHAOW dino
uy‘(ds‘zep),
NHAOW
(dS'zep) wy| uy‘zeww!
NAGAON NN
Uy (dS'Zep)| ud'zeww | uy‘zewiw
NAGAON NN o4ans
uy‘zeww ((ds‘zep)‘wy uy‘zewwi
NHINWGA NOW ans
uy‘zswuwl {uy‘(ds‘zep) uy‘zewwi (91sqe)‘gwiwi((9]sqe)‘gwii|(9]sqe) gl
HI1NWa NOW oaav 1s19 ¥109 13sg
uyggwy |(EE4) uy'Zgwwl USH'WSHZeWW! AldS USH'WSHZEWW! NN
NHOVING AOW aav
uy‘zewwi Uy uy‘zewwi us4'wsH‘zeww! gnsd us4‘'ws4‘zewwl gav4d
(Zewwi'+wy)
HOVING AOI IsvY
(zesqe)'wy Uy‘ZeWW! (Uy'Zep) Wy Uy zeww (ds'zep)was (ds'zep)wad amf.:%n_mcmv (uy'zep)'Wwa amﬁhﬂ:mv (uy'zep)'Wwa
NHAOW NHOVIN | NHAOW SISy NOWA4 NOWA4 AONd NOWA4 AONJ NOWA4
uy‘(zesae) uy‘zewwl iy (wy‘zep) uy‘zewwi (wy'zep) ua4'(ds‘eep) ug4'(zewwi +wy) ugd‘(wy'zep)
NHAOW HOVIN NHAOW SIS\ 4d0d NOWA4 NOWAH AOWA
(zesqe)‘wy uy'zZeww! (uy‘zep) wy (dS‘zeP) WS4 (ds‘zep)'ws4 amfc%m_..u_&% (uy'Zep)'ws ame%w_”_&% (uy'Zep)'ws
NGAON NGOV | NAAOW ug4‘zewwidNP4 AOWA U4 ZswwidiND4 AOWA AONA NOWA AON4 NOWA
uy‘(zesae) uy‘zeww Uy (wy‘zep) uy‘zewwt usH‘zewwl us4(ds‘zep) usH (zewwir‘+wy) us4‘(wy‘zep)
NAIAOW a0V NAGAOW HOX NOWA NOWA4 NOWA NOWA
(zesqe)‘wy uy‘zeww (Uy‘zep)'wy uy‘zewwi | uy‘zewwi
NOW NOVA NOW t[e] NAOW
uy‘(zgsqe) uy‘zewwl Uy (wy‘zep) uy‘zeww | uy‘zewwl (zesqe)‘gwwi(zgsqe)‘gwii | (zgsqe) guwl
NOW OVIN AOW aNy NOW 1s149 ¥109 13s9
3 g v 6 8 L 9 S 1% € Z 3 0

0

Jaddn
JamoT

a)kg pug

(epoD 81Aq G / 8poD 81Aq £) 34

387

INSTRUCTION MAP

INDEX

INDEX

A

add Am, An 76
add Am, Dn 76
add Dm, An 76
add Dm, Dn 76
add imm16, An 77
add imm16, Dn 77
add imm16, SP 77
add imm24, Rn 77
add imm32, An 77
add imm32, Dn 77
add imm32, Rn 77
add imm32, SP 77
add imm8, An 77
add imm8, Dn 77
add imm8, Rn 77
add imm8, SP 77
add Rm, Rn 76
add Rm, Rn, Rd 76
add_add imm4, Rn1, imm4, Rn2 --------- 171, 197
add_add imm4, Rn1, Rm2, Rn2 ---------- 170, 195
add_add Rm1, Rn1, imm4, Rn2 ---------- 169, 196
add_add Rm1, Rn1, Rm2, Rn2 ----------- 168, 194
add_asl imm4, Rn1, imm4, Rn2 ---------- 171, 219
add_asl imm4, Rn1, Rm2, Rn2 ----------- 170, 217
add_asl Rm1, Rn1, imm4, Rn2 ----------- 169, 218
add_asl Rm1, Rn1, Rm2, Rn2 ------------ 168, 216
add_asr imm4, Rn1, imm4, Rn2 ---------- 171, 211
add_asr imm4, Rn1, Rm2, Rn2 ----------- 170, 209
add_asr Rm1, Rn1, imm4, Rn2 ----------- 169, 210
add_asr Rm1, Rn1, Rm2, Rn2 ------------ 168, 208
add_cmp imm4, Rn1, imm4, Rn2 -------- 171, 203
add_cmp imm4, Rn1, Rm2, Rn2 --------- 170, 202
add_cmp Rm1, Rn1, imm4, Rn2 --------- 169, 203
add_cmp Rm1, Rn1, Rm2, Rn2 ---------- 168, 202
add_lsr imm4, Rn1, imm4, Rn2 ----------- 171, 215
add_Isr imm4, Rn1, Rm2, Rn2 ------------ 170, 213
add_Isr Rm1, Rn1, imm4, Rn2 ------------ 169, 214
add_Isr Rm1, Rn1, Rm2, Rn2 ------------- 168, 212
add_mov imm4, Rn1, imm4, Rn2 -------- 171, 207
add_mov imm4, Rn1, Rm2, Rn2 --------- 170, 205

388 Index

add_mov Rm1, Rn1, imm4, Rn2 --------- 169, 206
add_mov Rm1, Rn1, Rm2, Rn2 ---------- 168, 204
add_sub imm4, Rn1, imm4, Rn2 --------- 171, 201
add_sub imm4, Rn1, Rm2, Rn2 ---------- 170, 199
add_sub Rm1, Rn1, imm4, Rn2 ---------- 169, 200
add_sub Rm1, Rn1, Rm2, Rn2 ----------- 168, 198
addc Dm, Dn 78
addc imm24, Rn 79
addc imm32, Rn 79
addc imm8, Rn 79
addc Rm, Rn 78
addc Rm, Rn, Rd 78
and Dm, Dn 94
and imm16, Dn 95
and imm16, PSW 96
and imm24, Rn 95
and imm32, Dn 95
and imm32, EPSW 96
and imm32, Rn 95
and imm8, Dn 95
and imm8, Rn 95
and Rm, Rn 94
and Rm, Rn, Rd 94, 97
and_add Rm1, Rn1, imm4, Rn2 ---------- 183, 196
and_add Rm1, Rn1, Rm2, Rn2 ----------- 182, 194
and_asl Rm1, Rn1, imm4, Rn2 ----------- 183, 218
and_asl Rm1, Rn1, Rm2, Rn2 ------------ 182, 216
and_asr Rm1, Rn1, imm4, Rn2 ----------- 183, 210
and_asr Rm1, Rn1, Rm2, Rn2 ------------ 182, 208
and_cmp Rm1, Rn1, imm4, Rn2 --------- 183, 203
and_cmp Rm1, Rn1, Rm2, Rn2 ---------- 182, 202
and_Isr Rm1, Rn1, imm4, Rn2 ------------ 183, 214
and_Isr Rm1, Rn1, Rm2, Rn2 ----------—-- 182, 212
and_mov Rm1, Rn1, imm4, Rn2 --------- 183, 206
and_mov Rm1, Rn1, Rm2, Rn2 ---------- 182, 204
and_sub Rm1, Rn1, imm4 Rn2 ------------—-—--- 200
and_sub Rm1, Rn1, imm4, Rn2 ----------------- 183
and_sub Rm1, Rn1, Rm2, Rn2 ----------- 182, 198
asl imm8, Dn 116
asl Dm, Dn 114
asl imm24, Rn 116
asl imm32, Rn 116
asl imm8, Rn 116
asl Rm, Rn 114
asl Rm, Rn, Rd 115
asl2 Dn 117

asl2 Rn
asr imm8, Dn

asr Dm, Dn

asr imm24, Rn
asr imm32, Rn

asr imm8, Rn

asr Rm, Rn
asr Rm, Rn, Rd

B

bcc label

bclr imm8, (abs16)
bclr imm8, (abs32)
bclr imm8, (d8, An)

bclr Dm, (An)
bcs label

beq label

bge label
bgt label

bhi label

ble label

bls label

bit label
bnc label

bne label

bns label
bra label

bsch Rm, Rn

bsch Rm, Rn, Rd
bset imm8, (abs32)
bset imm8, (d8, An)

bset Dm, (An)

bset imm8, (abs16)

btst imm16, Dn
btst imm24, Rn
btst imm32, Dn
btst imm32, Rn

btst imm8, (abs16)
btst imm8, (abs32)
btst imma8, (d8, An)

btst imm8, Dn

btst imm8, Rn

bvc label
bvs label

117
110
108
110
110
110
108
109

120
107
107
107
106
120
120
120
120
120
120
120
120
120
120
120
120
166
167
105
105
104
105
103
103
103
103
103
103
103
103
103
120
120

INDEX

C

CALL (d16, PC), regs, imm8 -------=-====nmnmnmn 125
CALL (d32, PC), regs, imm8 ---------=-=-=-memm- 126
call label, regs, imm8 125, 126
calls (An) 127
calls label 128
CALLS (d16, PC) 128
CALLS (d32, PC) 128
clr Dn 74
clr Rn 74
cmp imm16, An 93
cmp imm16, Dn 93
cmp imm24, Rn 93
cmp imm32, An 93
cmp imm32, Dn 93
cmp imm32, Rn 93
cmp imm8, An 93
cmp imm8, Dn 93
cmp imm8, Rn 93
cmp Am, An 92
cmp Am, Dn 92
cmp Dm, An 92
cmp Dm, Dn 92
cmp Rm, Rn 92
cmp_add imm4, Rn1, imm4, Rn2 -------- 173, 197
cmp_add imm4, Rn1, Rm2, Rn2 ---------------- 195
cmp_add Rm1, Rn1, imm4, Rn2 --------- 172, 196
cmp_add Rm1, Rn1, Rm2, Rn2 ---------- 172, 194
cmp_asl imm4, Rn1, imm4, Rn2 --------- 173, 219
cmp_asl imm4, Rn1, Rm2, Rn2 ----------------- 217
cmp_asl Rm1, Rn1, imm4, Rn2 ---------- 172, 218
cmp_asl Rm1, Rn1, Rm2, Rn2 ----------- 172, 216
cmp_asr imm4, Rn1, imm4, Rn2 --------- 173, 211
cmp_asr imm4, Rn1, Rm2, Rn2 -------------—--- 209
cmp_asr Rm1, Rn1, imm4, Rn2 ---------- 172, 210
cmp_asr Rm1, Rn1, Rm2, Rn2 ----------- 172, 208
cmp_lsr imm4, Rn1, imm4, Rn2 ---------- 173, 215
cmp_lIsr imm4, Rn1, Rm2, Rn2 --------=-emmmm- 213
cmp_Isr Rm1, Rn1, imm4, Rn2 ----------- 172, 214
cmp_Isr Rm1, Rn1, Rm2, Rn2 ------------ 172, 212
cmp_mov imm4, Rn1, imm4, Rn2 ------- 173, 207
cmp_mov imm4, Rn1, Rm2, Rn2 --------------- 205
cmp_mov Rm1, Rn1, imm4, Rn2 -------- 172, 206
cmp_mov Rm1, Rn1, Rm2, Rn2 --------- 172, 204
cmp_sub imm4, Rn1, imm4, Rn2 -------- 173, 201
cmp_sub imm4, Rn1, Rm2, Rn2 ---------------- 199

Index

389

INDEX

cmp_sub Rm1, Rn1, imm4, Rn2 --------- 172, 200
cmp_sub Rm1, Rn1, Rm2, Rn2 ----------- 172, 198
D

depf (d24, Rm) 75
dcpf (d32, Rm) 75
dcpf (d8, Rm) 75
dcpf (Ri, Rm) 75
dcpf (Rm) 75
dcpf (SP) 75
div. Rm, Rn 88
div Dm, Dn 88
divu Rm, Rn 89
divu Dm, Dn 89
dmach imm32, Rn 142
dmach Rm, Rn 141
dmach Rm, Rn, Rd 141
dmach_add Rm1, Rn1, imm4, Rn2 ------------- 189
dmach_add Rm1, Rn1, Rm2, Rn2 ------- 188, 194
dmach_add Rm1,Rn1,imm4,Rn2---------------- 196
dmach_asl Rm1, Rn1, imm4, Rn2 ------- 189, 218
dmach_asl Rm1, Rn1, Rm2, Rn2 -------- 188, 216
dmach_asr Rm1, Rn1, imm4, Rn2 ------- 189, 210
dmach_asr Rm1, Rn1, Rm2, Rn2 -------- 188, 208
dmach_cmp Rm1, Rn1, imm4, Rn2 ---------—-- 189
dmach_cmp Rm1, Rn1, imm4,Rn2 ------------- 203
dmach_cmp Rm1, Rn1, Rm2, Rn2 ------ 188, 202
dmach_Isr Rm1, Rn1, imm4, Rn2 -------- 189, 214
dmach_Isr Rm1, Rn1, Rm2, Rn2 --------- 188, 212
dmach_mov Rm1, Rn1, imm4, Rn2 ------------ 189
dmach_mov Rm1, Rn1, Rm2, Rn2 ------ 188, 204
dmach_mov Rm1, Rn1,imm4,Rn2 -------------- 206
dmach_sub Rm1, Rn1, imm4, Rn2 ----------—-- 189
dmach_sub Rm1, Rn1, Rm2, Rn2 ------- 188, 198
dmach_sub Rm1,Rn1, imm4, Rn2 -----------—-- 200
dmachu imm32, Rn 144
dmachu Rm, Rn 143
dmachu Rm, Rn, Rd 143
dmulh imm32, Rn 138
dmulh Rm, Rn 137
dmulh Rm, Rn, Rd1, Rd2 137
dmulhu imm32, Rn 140
dmulhu Rm, Rn 139
dmulhu Rm, Rn, Rd1, Rd2 139

390 Index

E

ext Dn 69
ext Rn 69
extb Rm, Rn 72
extb Dn 72
extb Rn 72
extbu Rm, Rn 73
extbu Dn 73
extbu Rn 73
exth Rm, Rn 70
exth Dn 70
exth Rn 70
exthu Dn 71
exthu Rm, Rn 71
exthu Rn 71
F

fabs FSm, FSn 253
fabs FSn 253
fadd FSm, FSn 260
fadd FSm1, FSm2, FSn 260
fadd imm32, FSm, FSn 261
fbeq label 296
fbge label 296
fogt label 296
fole label 296
fbleg label 296
fblg label 296
folt label 296
fone label 296
foue label 296
foug label 296
fbuge label 296
foul label 296
foule label 296
fouo label 296
fcmp FSm1, FSm2 257
fcmp imm32, FSm, FSn 257
fdiv. FSm, FSn 269
fdiv. FSm1, FSm2, FSn 269
fdiv imm32, FSm, FSn 270
fleq 297
flge 297
flgt 297
flle 297
flleg 297

fllg
flit

fine

flue
flug

fluge
flul

flule

fluo

fmadd FSm1, FSm2, FSm3, FSn

fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov
fmov

(d24, Rm), FSn

(d24, SP), FSn

(d32, Rm), FSn
(d32, SP), FSn

(d8, Rm), FSn
(d8, SP), FSn

(Rm, Ri), FSn

(Rm), FSn
(Rm+), FSn

(SP), FSn

FSm, Rn
(d24,Rm),FDn

(d24,SP),FDn

(d32,Rm),FDn
(d32,SP),FDn

(d8,Rm),FDn

(d8,SP),FDn
(Rm,Ri),FDn

(Rm),FDn

(Rm+,imm24),FDn
(Rm+,imm32),FDn

(Rm+,imm8),FDn
(Rm+),FDn

(Rn+, imm24), FSn
(Rn+, imm32), FSn
(Rn+, imm8), FSn

(SP),FDn

FDm,(d24,Rn)
FDm,(d24,SP)

FDm,(d32,Rn)

FDm,(d32,SP)
FDm,(d8,Rn)

FDm,(d8,SP)

FDm,(Rn,Ri)

X
FDm,(Rn)
FDm,(Rn+,imm24)

297
297
297
297
297
297
297
297
297
272
236
236
236
236
236
236
236
236
238
236
242
247
247
247
247
247
247
247
247
250
250
250
249
239
239
239
247
248
248
248
248
248
248
248
248
252

INDEX

fmov FDm,(Rn+,imm32) 252
fmov FDm,(Rn+,imm8) 252
fmov FDm,(Rn+) 251
fmov FDm,(SP) 248
fmov FPCR,Rn 244
fmov FSm, (d24, Rn) 237
fmov FSm, (d24, SP) 237
fmov FSm, (d32, Rn) 237
fmov FSm, (d32, SP) 237
fmov FSm, (d8, Rn) 237
fmov FSm, (d8, SP) 237
fmov FSm, (Rn, Ri) 237
fmov FSm, (Rn) 237
fmov FSm, (Rn+, imm24) 241
fmov FSm, (Rn+, imm32) 241
fmov FSm, (Rn+, imm8) 241
fmov FSm, (SP) 237
fmov FSm, FSn 242
fmov FSn, (Rn+) 240
fmov imm32,FPCR 246
fmov imm32,FSn 243
fmov Rm,FPCR 245
fmov Rm,FSn 243
fmsub FSm1, FSm2, FSm3, FSn -———-----em—--- 278
fmul FSm, FSn 266
fmul FSm1, FSm2, FSn 266
fmul imm32, FSm, FSn 267
fneg FSm, FSn 254
fneg FSn 254
fnmadd FSm1, FSm2, FSm3, FSn --------—---- 284
fnrmsub FSm1, FSm2, FSm3, FSn----—----mm--- 290
frsqrt FSm 255
frsqrt FSm, FSn 255
fsub FSm1, FSm2, FSn 263
fsub imm32, FSm, FSn 264
fsud FSm, FSn 263
|

inc An 90
inc Dn 90
inc Rn 90
inc4 An 91
inc4 Rn 91
J

jmp label 123, 124

Index 391

INDEX

jmp (An)
JMP (d16, PC)
JMP (d32, PC)

L

Icc
Ics
leq
Ige
Igt
Ihi
lle
lls
It
Ine
Ira
Isr
Isr
Isr
Isr
Isr
Isr
Isr

mac imm24, Rn
mac imm32, Rn
mac imm8, Rn
mac Rm, Rn
mac Rm, Rn, Rd1, Rd2
macb imm8, Rn
macb imm24, Rn
macb imm32, Rn
macb Rm, Rn
macb Rm, Rn, Rd
macbu imm8, Rn
macbu imm24, Rn
macbu imm32, Rn
macbu Rm, Rn
macbu Rm, Rn, Rd
mach imm8, Rn
mach imm24, Rn
mach imm32, Rn
mach Rm, Rn

label
label

label

label
label

label

label
label

label

label
label

imm8, Dn

Dm, Dn
imm24, Rn

imm32, Rn

imm8, Rn
Rm, Rn

Rm, Rn, Rd

mach Rm, Rn, Rd1, Rd2

machu imm8, Rn

392 Index

123
123
124

121
121
121
121
121
121
121
121
121
121
121
113
1M1
113
113
113
1M1
112

146
146
146
145
145
154
154
154
153
153
156
156
156
155
155
150
150
150
149
149
152

macu
macu
macu
macu
macu

mcste Rm, Rn

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

machu imm24, Rn 152
machu imm32, Rn 152
machu Rm, Rn 151
machu Rm, Rn, Rd1, Rd2 151
imm24, Rn 148
imm32, Rn 148

imm8, Rn 148

Rm, Rn 147

Rm, Rn, Rd1, Rd2 147

mcste imm8, Rn 165
163

(Rm+), Rn 50

Am, An 33

Am, Dn 33

Am, MSP 34

Am, Rn 33

Am, SP 40

Am, SSP 35

Am, USP 36

Dm, An 33

Dm, Dn 33

Dm, EPSW 37

Dm, MDR 39

Dm, PSW 38

Dm, Rn 33
EPSW, Dn 37
imm16, An 33
imm16, Dn 33
imm24, Rn 33
imm32, An 33
imm32, Dn 33
imm32, Rn 33
imm8, An 33
imm8, Dn 33
imm8, Rn 33
MCRH, Rn 42
MCRL, Rn 43
MCVF, Rn 44
MDR, Dn 39
MDRQ, Rn 41

MSP, An 34

PC, An 45
PSW, Dn 38

Rm, (Rn+) 51

Rm, An 33

Rm, Dn 33

mov

mov Rm, MCRH
mov Rm, MCRL

mov Rm, MCVF

mov Rm, MDRQ
mov Rm, Rn

mov Rm, SP

mov SP, An
mov SP, Rn

mov SSP, An

mov USP, An
mov (abs16),An

mov (abs16),Dn

mov (abs24),Rn
mov (abs32),An

mov (abs32),Dn

mov (abs32),Rn
mov (abs8),Rn

mov (Am),An
mov (Am),Dn

mov (d16,Am),An
mov (d16,Am),Dn
mov (d16,SP),An
mov (d16,SP),Dn
mov (d24,Rm),Rn
mov (d24,SP),Rn
mov (d32,Am),An
mov (d32,Am),Dn
mov (d32,Rm),Rn
mov (d32,SP),An
mov (d32,SP),Dn
mov (d32,SP),Rn

mov (d8,Am),An
mov (d8,Am),Dn

mov (d8,Am),SP

mov (d8,Rm),Rn
mov (d8,SP),An

mov (d8,SP

mov (d8,SP

mov (Di,Am

),Dn
),Rn
mov (Di,Am),An
),Dn
mov (Ri,Rm),Rn
mov (Rm),Rn

mov (Rm+, imm24), Rn
mov (Rm+, imm32), Rn
mov (Rm+, imm8), Rn

mov (SP),Rn

42
43
44
41
33
40
40
40
35
36
46
46
46
46
46
46
46
46
46
46
46
46
46
46
47
46
46
46
47
46
47
46
46
47
46
46
46
47
46
46
46
46
50
50
50
47

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

INDEX

Am,(abs16) 48
Am,(abs32) 48
Am,(An) 48
Am,(d16,An) 48
Am,(d16,SP) 48
Am,(d32,An) 48
Am,(d32,SP) 49
Am,(d8,An) 48
Am,(d8,SP) 48
Am,(Di,An) 48
Dm,(abs16) 48
Dm,(abs32) 48
Dm,(An) 48
Dm,(d16,An) 48
Dm,(d16,SP) 48
Dm,(d32,An) 48
Dm,(d32,SP) 48
Dm,(d8,An) 48
Dm,(d8,SP) 48
Dm,(Di,An) 48
imm24, MCRH 42
imm24, MCRL 43
imm24, MCVF 44
imm24, MDRQ 41
imm24, SP 40
imm32, MCRH 42
imm32, MCRL 43
imm32, MCVF 44
imm32, MDRQ 41
imm32, SP 40
imm8, MCRH 42
imm8, MCRL 43
imm8, MCVF 44
imm8, MDRQ 41
imm8, SP 40
Rm, (Rn+, imm24) 51
Rm, (Rn+, imm32) 51
Rm, (Rn+, imm8) 51
Rm,(abs24) 48
Rm,(abs32) 48
Rm,(abs8) 48
Rm,(d24,Rn) 48
Rm,(d24,SP) 49
Rm,(d32,Rn) 48
Rm,(d32,SP) 49
Rm,(d8,Rn) 48
Rm,(d8,SP) 49

Index 393

INDEX

mov Rm,(Ri,Rn) 48
mov Rm,(Rn) 48
mov Rm,(SP) 49
mov SP,(d8,An) 49
mov_add imm4, Rn1, imm4, Rn2 -------- 181, 197
mov_add imm4, Rn1, Rm2, Rn2 --------- 180, 195
mov_add Rm1, Rn1, imm4, Rn2 --------- 179, 196
mov_add Rm1, Rn1, Rm2, Rn2 ---------- 178, 194
mov_asl imm4, Rn1, imm4, Rn2 --------- 181, 219
mov_asl imm4, Rn1, Rm2, Rn2 ---------- 180, 217
mov_asl Rm1, Rn1, imm4, Rn2 ---------- 179, 218
mov_asl Rm1, Rn1, Rm2, Rn2 ----------- 178, 216
mov_asr imm4, Rn1, imm4, Rn2 --------- 181, 211
mov_asr imm4, Rn1, Rm2, Rn2 ---------- 180, 209
mov_asr Rm1, Rn1, imm4, Rn2 ---------- 179, 210
mov_asr Rm1, Rn1, Rm2, Rn2 ----------- 178, 208
mov_cmp imm4, Rn1, imm4, Rn2 ------- 181, 203
mov_cmp imm4, Rn1, Rm2, Rn2 -------- 180, 202
mov_cmp Rm1, Rn1, imm4, Rn2 -------- 179, 203
mov_cmp Rm1, Rn1, Rm2, Rn2 --------- 178, 202
mov_lcc (Rm+, imm4), Rn ---------m-mmmeee- 221
mov_Ilcs (Rm+, imm4), RN --------m-memeemeeem- 221
mov_leq (Rm+, imm4), Rn -----—--—-mmemmmee- 221
mov_Ige (Rm+, imm4), Rn ------=-=-emememmmev 221
mov_Igt (Rm+, imm4), Rn ---------mmmmmee - 221
mov_lhi (Rm+, imm4), Rn --------m-memee - 221
mov_lle (Rm+, imm4), Rn --—----mmmemmmmeeee 221
mov_lls (Rm+, imm4), Rn --------mmmemmm - 221
mov_ It (Rm+, imm4), Rn -=----=mmmmmmmemee 221
mov_Ine (Rm+, imm4), Rn ----------=-mmemeeem- 221
mov_lra (Rm+, imm4), Rn 221
mov_Isr imm4, Rn1, imm4, Rn2 ---------- 181, 215
mov_lIsr imm4, Rn1, Rm2, Rn2 ----------- 180, 213
mov_Isr Rm1, Rn1, imm4, Rn2 ----------- 179, 214
mov_Isr Rm1, Rn1, Rm2, Rn2 ------------ 178, 212
mov_mov imm4, Rn1, imm4, Rn2 ------- 181, 207
mov_mov imm4, Rn1, Rm2, Rn2 -------- 180, 205
mov_mov Rm1, Rn1, imm4, Rn2 -------- 179, 206
mov_mov Rm1, Rn1, Rm2, Rn2 --------- 178, 204
mov_sub imm4, Rn1, imm4, Rn2 -------- 181, 201
mov_sub imm4, Rn1, Rm2, Rn2 --------- 180, 199
mov_sub Rm1, Rn1, imm4, Rn2 --------- 179, 200
mov_sub Rm1, Rn1, Rm2, Rn2 ---------- 178, 198
movbu (abs16),Dn 59
movbu (abs24),Rn 59
movbu (abs32),Dn 59

394 Index

movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movbu
movhu
movhu
movhu
movhu
movhu

(abs32),Rn
(abs8),Rn

(Am),Dn

(d16,Am),Dn
(d16,SP),Dn

(d24,Rm),Rn

(d24,SP),Rn
(d32,Am),Dn
(d32,Rm),Rn

(d32,SP),Dn
(d32,SP),Rn

(d8,Am),Dn

(d8,Rm),Rn
(d8,SP),Dn

(d8,SP),Rn
(Di,Am),Dn

(Ri,Rm),Rn

(Rm),Rn
(SP),Rn

Dm,(abs16)

Dm,(abs32)
Dm,(An)

Dm,(d16,An)
Dm,(d16,SP)
Dm,(d32,An)
Dm,(d32,SP)

Dm,(d8,An)
Dm,(d8,SP)

Dm,(Di,An)

Rm,(abs24)
Rm,(abs32)

Rm,(abs8)
Rm,(d24,Rn)
Rm,(d24,SP)
Rm,(d32,Rn)
Rm,(d32,SP)
Rm,(d8,Rn)

Rm,(d8,SP)
Rm,(Ri,Rn)

Rm,(Rn)

Rm,(SP)
(Rm+), Rn

Rm, (Rn+)

(abs16),Dn
(abs24),Rn

(abs32),Dn

59
59
59
59
59
59
59
59
59
59
59
59
59
59
59
59
59
59
59
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
57
58
53
53
53

movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu
movhu

(abs32),Rn
(abs8),Rn

(Am),Dn

(d16,Am),Dn
(d16,SP),Dn

(d24,Rm),Rn

(d24,SP),Rn
(d32,Am),Dn

(d32,Rm),Rn

(d32,SP),Dn
(d32,SP),Rn

(d8,Am),Dn

(d8,Rm),Rn
(d8,SP),Dn

(d8,SP),Rn

(Di,Am),Dn
(Ri,Rm),Rn

(Rm),Rn
(Rm+, imm24), Rn
(Rm+, imm32), Rn

(Rm+, imm8), Rn
(SP),Rn

Dm,(abs16)

Dm,(abs32)
Dm,(An)

Dm,(d16,An

~

Dm,(d16,SP
Dm,(d32,An

- -

Dm,(d32,SP

~

Dm,(d8,An)
Dm,(d8,SP)

Dm,(Di,An)
Rm,(abs24)

Rm,(abs32)

Rm,(abs8)
Rm,(d24,Rn

Rm,(d24,SP

Rm,(d32,Rn
Rm,(d32,SP

~ — ~— ~—

Rm,(d8,Rn)

Rm,(d8,SP)
Rm,(Ri,Rn)

Rm,(Rn)

Rm,(SP)
Rm(Rn+, imm24)

Rm(Rn+, imm32)

53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
57
57
57
53
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
58
58

INDEX

movhu Rm(Rn+, imm8) 58
movm (SP), [reg1, reg2,,,regn] -------------------- 61
movm (USP),[reg1, reg2,,,regn] ------------------- 65
movm [reg1, reg2,,,regn], (SP) -------------------- 63
movm [reg1, reg2,,,regn], (USP) ------------m-—-- 67
movu imm24, Rn 52
movu imm32, Rn 52
movu imm8, Rn 52
mul Dm, Dn 84
mul imm24, Rn 85
mul imm32, Rn 85
mul imm8, Rn 85
mul Rm, Rn 84
mul Rm, Rn, Rd1, Rd2 84
mulu Dm, Dn 86
mulu imm24, Rn 87
mulu imm32, Rn 87
mulu imm8, Rn 87
mulu Rm, Rn 86
mulu Rm, Rn, Rd1, Rd2 86
N

nop 134
not Dn 102
not Rn 102
o

or imm8, Rn 98
or Dm, Dn 97
or imm16, Dn 98
or imm16, PSW 99
or imm24, Rn 98
or imm32, Dn 98
or imm32, EPSW 99
or imm32, Rn 98
or imm8, Dn 98
or Rm, Rn 97
or_add Rm1, Rn1, imm4, Rn2 ------------ 185, 196
or_add Rm1, Rn1, Rm2, Rn2 ------------- 184, 194
or_asl Rm1, Rn1, imm4, Rn2 ------------- 185, 218
or_asl Rm1, Rn1, Rm2, Rn2 --------------- 184, 216
or_asr Rm1, Rn1, imm4, Rn2 ------------- 185, 210
or_asr Rm1, Rn1, Rm2, Rn2 -----------—-- 184, 208
or_cmp Rm1, Rn1, imm4, Rn2 ----------- 185, 203
or_cmp Rm1, Rn1, Rm2, Rn2 ------------- 184, 202
or_Isr Rm1, Rn1, imm4, Rn2 -------------- 185, 214

Index 395

INDEX

or_Isr Rm1, Rn1, Rm2, Rn2 --------------- 184, 212
or_mov Rm1, Rn1, imm4, Rn2 ----------- 185, 206
or_mov Rm1, Rn1, Rm2, Rn2------------- 184, 204
or_sub Rm1, Rn1, imm4, Rn2------------- 185, 200
or_sub Rm1, Rn1, Rm2, Rn2 -------------- 184, 198
P

pi 136
R

ret 129
retf 130
rets 131
rol Dn 119
rol Rn 119
ror Dn 118
ror Rn 118
rti 132
S

sat16 Rm, Rn 160
sat16_add Rm1, Rn1, imm4, Rn2 -------- 193, 196
sat16_add Rm1, Rn1, Rm2, Rn2 --------- 192, 194
sat16_asl Rm1, Rn1, imm4, Rn2 --------- 193, 218
sat16_asl Rm1, Rn1, Rm2, Rn2 ---------- 192, 216
sat16_asr Rm1, Rn1, imm4, Rn2 --------- 193, 210
sat16_asr Rm1, Rn1, Rm2, Rn2 ---------- 192, 208
sat16_cmp Rm1, Rn1, imm4, Rn2 ------- 193, 203
sat16_cmp Rm1, Rn1, Rm2, Rn2 -------- 192, 202
sat16_Isr Rm1, Rn1, imm4, Rn2 --------- 193, 214
sat16_Isr Rm1, Rn1, Rm2, Rn2 ----------- 192, 212
sat16_mov Rm1, Rn1, imm4, Rn2 ------- 193, 206
sat16_mov Rm1, Rn1, Rm2, Rn2 -------- 192, 204
sat16_sub Rm1, Rn1, imm4, Rn2 -------- 193, 200
sat16_sub Rm1, Rn1, Rm2, Rn2 --------- 192, 198
sat24 Rm, Rn 161
setlb 122
sub imm24, An 81
sub imm32, Rn 81
sub imm8, Dn 81
sub Am, An 80
sub Am, Dn 80
sub Dm, An 80
sub Dm, Dn 80
sub imm32, An 81
sub imm32, Dn 81

396 Index

sub Rm, Rn 80
sub Rm, Rn, Rd 80
sub_add imm4, Rn1, imm4, Rn2 --------- 177, 197
sub_add imm4, Rn1, Rm2, Rn2 ---------- 176, 195
sub_add Rm1, Rn1, imm4, Rn2 ---------- 175, 196
sub_add Rm1, Rn1, Rm2, Rn2 ----------- 174, 194
sub_asl imm4, Rn1, imm4, Rn2 ---------- 177, 219
sub_asl imm4, Rn1, Rm2, Rn2 ----------- 176, 217
sub_asl Rm1, Rn1, imm4, Rn2 ----------- 175, 218
sub_asl Rm1, Rn1, Rm2, Rn2------------- 174, 216
sub_asr imm4, Rn1, imm4, Rn2 ---------- 177, 211
sub_asr imm4, Rn1, Rm2, Rn2 ----------- 176, 209
sub_asr Rm1, Rn1, imm4, Rn2 ----------- 175, 210
sub_asr Rm1, Rn1, Rm2, Rn2 ------------ 174, 208
sub_cmp imm4, Rn1, imm4, Rn2 -------- 177, 203
sub_cmp imm4, Rn1, Rm2, Rn2 --------- 176, 202
sub_cmp Rm1, Rn1, imm4, Rn2 --------- 175, 203
sub_cmp Rm1, Rn1, Rm2, Rn2 ----------- 174, 202
sub_lIsr imm4, Rn1, imm4, Rn2 ----------- 177, 215
sub_Isr imm4, Rn1, Rm2, Rn2 ------------ 176, 213
sub_Isr Rm1, Rn1, imm4, Rn2 ------------ 175, 214
sub_Isr Rm1, Rn1, Rm2, Rn2 ------------- 174, 212
sub_mov imm4, Rn1, imm4, Rn2 -------- 177, 207
sub_mov imm4, Rn1, Rm2, Rn2 --------- 176, 205
sub_mov Rm1, Rn1, imm4, Rn2 --------- 175, 206
sub_mov Rm1, Rn1, Rm2, Rn2 ---------- 174, 204
sub_sub imm4, Rn1, imm4, Rn2 --------- 177, 201
sub_sub imm4, Rn1, Rm2, Rn2 ---------- 176, 199
sub_sub Rm1, Rn1, imm4, Rn2 ---------- 175, 200
sub_sub Rm1, Rn1, Rm2, Rn2 ------------ 174, 198
subc Dm, Dn 82
subc imm24, Rn 83
subc imm32, Rn 83
subc imm8, Rn 83
subc Rm, Rn 82
subc Rm, Rn, Rd 82
swap Rm, Rn 158
swaph Rm, Rn 159
swhw Rm, Rn 157
swhw_add Rm1, Rn1, imm4, Rn2 -------- 191, 196
swhw_add Rm1, Rn1, Rm2, Rn2 --------- 190, 194
swhw_asl Rm1, Rn1, imm4, Rn2 --------- 191, 218
swhw_asl Rm1, Rn1, Rm2, Rn2 ---------- 190, 216
swhw_asr Rm1, Rn1, imm4, Rn2 --------- 191, 210
swhw_asr Rm1, Rn1, Rm2, Rn2 ---------- 190, 208
swhw_cmp Rm1, Rn1, imm4, Rn2 ------- 191, 203

swhw_cmp Rm1, Rn1, Rm2, Rn2
swhw_Isr Rm1, Rn1, imm4, Rn2

swhw_Isr Rm1, Rn1, Rm2, Rn2 ----------- 190,
swhw_mov Rm1, Rn1, imm4, Rn2 ------- 191,
swhw_mov Rm1, Rn1, Rm2, Rn2 -------- 190,
swhw_sub Rm1, Rn1, imm4, Rn2 -------- 191,
swhw_sub Rm1, Rn1, Rm2, Rn2

syscall imm4

T

trap

U

udfO0 Dm, Dn

udf00

imm16, Dn

udfo0 imm32, Dn

udfO0 imm8, Dn

udfo1

Dm, Dn

udf02 Dm, Dn

udf03
udfo4

Dm, Dn

Dm, Dn

udf05 Dm, Dn

udf06
udfo7

Dm, Dn
Dm, Dn

udf08 Dm, Dn

udf09
udf12

Dm, Dn
Dm, Dn

udf13 Dm, Dn

udf15 Dm, Dn
udfu01 imm16, Dn

udfu01 imm32, Dn

udfu01 imm8, Dn
X

xor imm24,Rn

xor Dm, Dn

xor imm16, Dn

xor imm32, Dn

xor imm32, Rn

imm8, Rn
Rm, Rn

xor
xor

xor Rm, Rn, Rd

xor_add Rm1, Rn1, imm4, Rn2 ----------- 187,
xor_add Rm1, Rn1, Rm2, Rn2 ------------ 186,
xor_asl Rm1, Rn1, imm4, Rn2 ------------ 187,
xor_asl Rm1, Rn1, Rm2, Rn2

202
214
212
206
204
200
198
135

133

222
222
222
222
223
225
226
227
228
229
230
231
232
233
234
235
223
223
223

101
100
101
101
101
101
100
100
196
194
218
216

xor_asr Rm1, Rn1, imm4, Rn2 ------------
xor_asr Rm1, Rn1, Rm2, Rn2 ------m-mme--
xor_cmp Rm1, Rn1, imm4, Rn2 ----------
xor_cmp Rm1, Rn1, Rm2, Rn2
xor_Isr Rm1, Rn1, imm4, Rn2

xor_Isr Rm1, Rn1, Rm2, Rn2 -----=--m-mm--
xor_mov Rm1, Rn1, imm4, Rn2 ----------
xor_mov Rm1, Rn1, Rm2, Rn2 -----------
xor_sub Rm1, Rn1, imm4, Rn2 -----------
xor_sub Rm1, Rn1, Rm2, Rn2

INDEX

210
208
203
202
214
212
206
204
200
198

Index 397

MN103E Series
Instruction Manual

March, 2003 2nd Edition

Issued by Matsushita Electric Industrial Co., Ltd.
© Matsushita Electric Industrial Co., Ltd.

Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

Nagaokakyo, Kyoto 617-8520, Japan
Tel: (075) 951-8151
http://panasonic.co.jp/semicon

SALES OFFICES

= NORTH AMERICA
e U.S.A. Sales Office:

Panasonic Industrial Company [PIC]

* New Jersey Office:

Two Panasonic Way Secaucus, New Jersey 07094 U.S.A.
Tel: 1-201-348-5257 Fax:1-201-392-4652

« Chicago Office:

1707 N. Randall Road Elgin, lllinois 60123-7847 U.S.A.
Tel: 1-847-468-5720 Fax:1-847-468-5725

« Milpitas Office:

1600 McCandless Drive Milpitas, California 95035 U.S.A.
Tel: 1-408-942-2912 Fax:1-408-946-9063

« Atlanta Office:

1225 Northbrook Parkway Suite 1-151 Suwanee, GA

30024 U.S.A.
Tel: 1-770-338-6953 Fax:1-770-338-6849

« San Diego Office:

9444 Balboa Avenue, Suite 185, San Diego, California

92123 U.S.A.
Tel: 1-619-503-2903 Fax:1-858-715-5545

e Canada Sales Office:

Panasonic Canada Inc. [PCI]
5770 Ambler Drive 27 Mississauga, Ontario, L4W 2T3
CANADA

Tel: 1-905-238-2315 Fax:1-905-238-2414
m LATIN AMERICA
e Mexico Sales Office:
Panasonic de Mexico, S.A. de C.V. [PANAMEX]
Amores 1120 Col. Del Valle Delegacion Benito Juarez
C.P. 03100 Mexico, D.F. MEXICO
Tel: 52-5-488-1000 Fax:52-5-488-1073
« Guadalajara Office:
SUCURSAL GUADALAJARA
Av. Lazaro Cardenas 2305 Local G-102 Plaza Comercial
Abastos; Col. Las Torres Guadalajara, Jal. 44920
MEXICO
Tel: 52-3-671-1205
e Brazil Sales Office:
Panasonic do Brasil Ltda. [PANABRAS]
Caixa Postal 1641, Sao Jose dos Campos, Estado de Sao
Paulo
Tel: 55-12-335-9000 Fax:55-12-331-3789
= EUROPE
e Europe Sales Office:
Panasonic Industrial Europe GmbH [PIE]
« U.K. Sales Office:
Willoughby Road, Bracknell, Berks., RG12 8FP,
THE UNITED KINGDOM
Tel: 44-1344-85-3671 Fax:44-1344-85-3853
« Germany Sales Office:
Hans-Pinsel-Strasse 2 85540 Haar, GERMANY
Tel: 49-89-46159-119 Fax:49-89-46159-195
m ASIA
e Singapore Sales Office:
Panasonic Semiconductor of South Asia [PSSA]
300 Beach Road, #16-01, The Concourse, Singapore
199555 THE REPUBLIC OF SINGAPORE
Tel: 65-6390-3688 Fax:65-6390-3689
e Malaysia Sales Office:
Panasonic Industrial Company (M) Sdn. Bhd. [PICM]
* Head Office:
Tingkat 16B, Menara PKNS Petaling Jaya, No.17, Jalan
Yong Shook Lin 46050 Petaling Jaya, Selangor Darul
Ehsan, MALAYSIA
Tel: 60-3-7951-6601 Fax:60-3-7954-5968

Fax:52-3-671-1256

0 Matsushita Electric Industrial Co., Ltd. 2003

« Penang Office:
Suite 20-07,20th Floor, MWE Plaza, No.8, Lebuh
Farquhar,10200 Penang, MALAYSIA
Tel: 60-4-201-5113 Fax:60-4-261-9989
« Johore Sales Office:
Menara Pelangi, Suite8.3A, Level8, No.2, Jalan Kuning
Taman Pelangi, 80400 Johor Bahru, Johor, MALAYSIA
Tel: 60-7-331-3822 Fax:60-7-355-3996
e Thailand Sales Office:
Panasonic Industrial (THAILAND) Ltd. [PICT]
252-133 Muang Thai-Phatra Complex Building, 31st Fl.
Rachadaphisek Rd., Huaykwang, Bangkok 10320,
THAILAND
Tel: 66-2-693-3428 Fax:66-2-693-3422
e Philippines Sales Office: [PISP]
Panasonic Indsutrial Sales Philippines Division of
Matsushita Electric Philippines Corporation
102 Laguna Boulevard,Bo.Don Jose Laguna Technopark,
Santa. Rosa, Laguna 4026 PHILIPPINES
Tel: 63-2-520-8615 Fax:63-2-520-8629
e India Sales Office:
National Panasonic India Ltd. [NPI]
E Block, 510, International Trade Tower Nehru Place, New
Delhi_110019 INDIA
Tel: 91-11-629-2870 Fax:91-11-629-2877
e Indonesia Sales Office:
P.T.MET & Gobel [M&G]
JL. Dewi Sartika (Cawang 2) Jakarta 13630, INDONESIA
Tel: 62-21-801-5666 Fax:62-21-801-5675
e China Sales Office:
Panasonic Industrial (Shanghai) Co., Ltd. [PI(SH)]
Floor 12, Zhong Bao Mansion, 166 East Road Lujian Zui,
PU Dong New District, Shanghai, 200120 CHINA
Tel: 86-21-5866-6114 Fax:86-21-5866-8000
Panasonic Industrial (Tianjin) Co., Ltd. [PI(TI)]
Room No.1001, Tianjin International Building 75, Nanjin
Road, Tianjin 300050, CHINA
Tel: 86-22-2313-9771 Fax:86-22-2313-9770
Panasonic SH Industrial Sales (Shenzhen) Co., Ltd.
[PSI(SZ)]
* Head Office:
7A-107, International Bussiness & Exhibition Centre,
Futian Free Trade Zone, Shenzhen 518048, CHINA
Tel: 86-755-8359-8500 Fax:86-755-8359-8516
« Shum Yip Centre Office:
25F, Shum Yip Centre, #5045, East Shennan Road,
Shenzhen, CHINA
Tel: 86-755-8211-0888 Fax:86-755-8211-0884
Panasonic Shun Hing Industrial Sales (Hong Kong)
Co., Ltd. [PSI(HK)]
11th Floor, Great Eagle Center 23 Harbour Road,
Wanchai, HONG KONG
Tel: 852-2529-7322 Fax:852-2865-3697
e Taiwan Sales Office:
Panasonic Industrial Sales (Taiwan) Co.,Ltd. [PIST]
» Head Office:
6F, 550, Sec. 4, Chung Hsiao E. RD. Taipei, 110, TAIWAN
Tel: 886-2-2757-1900 Fax:886-2-2757-1906
« Kaohsiung Office:
6th Floor, Hsin Kong Bldg. No.251, Chi Hsien 1st Road
Kaohsiung 800, TAIWAN
Tel: 886-7-346-3815 Fax:886-7-236-8362
e Korea Sales Office:
Panasonic Industrial Korea Co., Ltd. [PIKL]
Kukje Center Bldg. 11th Fl., 191 Hangangro 2ga,
Youngsan-ku, Seoul 140-702, KOREA
Tel: 82-2-795-9600 Fax:82-2-795-1542

110303
Printed in JAPAN

	Cover
	Special attention and precautions
	About this manual
	Chapter title
	Table of Contents
	Chapter 1 Instruction Introduction
	1. Instruction system
	2. Basic register set
	2-1 Register set
	2-1-1 Address register
	2-1-2 Data register
	2-1-3 Extension register
	2-1-4 Stack pointer
	2-1-5 Program counter
	2-1-6 Processor status word
	2-1-7 Loop instruction register
	2-1-8 Loop address register
	2-1-9 Multiply/divide register

	2-2 Extended register set
	2-2-1 Extended operation register
	2-2-2 Multiply-and-accumulate operation registers
	2-2-3 Multiply-and-accumulate overflow flag

	2-3 Floating-point register set
	2-3-1 Floating-point register
	2-3-2 Floating-point unit control register

	3. Instruction functions
	3-1 Tranfer instructions
	3-2 Arithmetic operation instruction
	3-3 Compare instruction
	3-4 Logic operation instruction
	3-5 Bit manipulation instructions
	3-6 Shift instructions
	3-7 NOP instructions
	3-8 Branch instructions
	3-9 Debug instruction
	3-10 Extended operation instructions
	3-11 LIW extended operation instructions
	3-12 Floating-point operation instructions

	4. Memory space
	Address space when using an MMU (logical address space)
	Address space when not using an MMU

	5. Addressing mode
	5-1 Register direct
	5-2 Immediate
	5-3 Register indirect
	5-4 Register relative indirect
	5-5 Absolute
	5-6 Register indirect with indexed addressing

	6. Instruction formats
	6-1 Data formats
	6-2 Endian

	Chapter 2 Instruction Description
	Notations
	Transfer instruction
	MOV
	MOVU
	MOVHU
	MOVBU
	MOVM
	EXT
	EXTH
	EXTHU
	EXTB
	EXTBU
	CLR
	DCPF

	Arithmetic instruction
	ADD
	ADDC
	SUB
	SUBC
	MUL
	MULU
	DIV
	DIVU
	INC
	INC4

	Compare instruction
	CMP

	Logical instruction
	AND
	OR
	XOR
	NOT

	Bit manipulate instruction
	BTST
	BSET
	BCLR

	Shift instruction
	ASR
	LSR
	ASL
	ASL2
	ROR
	ROL

	Branch instruction
	Bcc
	Lcc
	SETLB
	JMP
	CALL
	CALLS
	RET
	RETF
	RETS
	RTI
	TRAP
	NOP
	SYSCALL

	Debug instruction
	PI

	Extension operation instruction
	DMULH
	DMULHU
	DMACH
	DMACHU
	MAC
	MACU
	MACH
	MACHU
	MACB
	MACBU
	SWHW
	SWAP
	SWAPH
	SAT16
	SAT24
	MCSTE
	BSCH

	LIW instruction
	ADD_OP2
	CMP_OP2
	SUB_OP2
	MOV_OP2
	AND_OP2
	OR_OP2
	XOR_OP2
	DMACH_OP2
	SWHW_OP2
	SAT16_OP2
	OP1_ADD
	OP1_SUB
	OP1_CMP
	OP1_MOV
	OP1_ASR
	OP1_LSR
	OP1_ASL
	MOV_Lcc

	UDF instruction
	UDF00
	UDF01
	UDF02
	UDF03
	UDF04
	UDF05
	UDF06
	UDF07
	UDF08
	UDF09
	UDF12
	UDF13
	UDF15

	FPU instruction
	FMOV
	FABS FSn
	FNEG
	FRSQRT
	FCMP
	FADD
	FSUB
	FMUL
	FDIV
	FMADD
	FMSUB
	FNMADD
	FNMSUB
	FBCC
	FLCC

	Chapter 3 Directions for using instructions
	Cautions for programming
	1. Pipeline architecture
	1-1 Pipeline operation
	1-2 Pipeline operations of operations between registers
	1-3 Pipeline operation of data load
	1-4 Pipeline operations of data store
	1-5 Branch pipeline operations
	1-6 Pipeline operations of SETLB and LCC
	1-7 Number of instruction executing cycles
	1-7-1 No dependence between instructions
	1-7-2 Register dependence between instructions
	1-7-3 Flag dependence between instructions
	1-7-4 When the FPU instruction is subsequent to CPU load/store instruction

	2. Cautions on instruction description
	3. Recommendations on instruction description
	3-1 Instruction assignment subsequent to branch instruction
	3-2 Instruction assignment subsequent to SETLB
	3-3 Assignment of the instructions preceding RETF
	3-4 Assignment of the instructions of CALL/CALLS branch targets

	Chapter 4 Appendix
	INDEX
	Colophon
	Sales Offices

